# PREDICTING THE EFFECT OF VEGETATION CHANGES ON CATCHMENT AVERAGE WATER BALANCE

## TECHNICAL REPORT 99/12

November 1999

### L. Zhang / W.R. Dawes / G.R. Walker









# Predicting the effect of vegetation changes on catchment average water balance

## L. Zhang, W. R. Dawes, G.R. Walker

Cooperative Research Centre for Catchment Hydrology CSIRO Land and Water Preface

This work was conducted under the S3 project, 'Salt Exports from Dryland Catchments'. The aim of the work was specific, to estimate the effects of afforestation or deforestation on run-off that leads to recharge to some of the alluvial catchments in the upland areas of the Murray-Darling Basin. The method proved to be more successful than expected, leading to simple robust estimators at an appropriate scale. Having done this, the method could be used much more widely than its original purpose, providing a basis for making estimates of the water yield impacts of wide-scale afforestation in the Murray-Darling Basin. This report substantiates the estimators, both from a process understanding and a statistical analysis of a large number of catchments.

i

Glen Walker

Leader, Salinity Program.

November, 1999

COOPERATIVE RESEARCH CENTRE FOR **CATCHMENT HYDROLOGY** 

# Abstract

It is now well established that that forests increase catchment evapotranspiration compared to grassed catchments. This has implications for catchment water balance in terms of land use management and rehabilitation strategies. The key processes that control evapotranspiration include rainfall interception, net radiation, advection, turbulent transport, leaf area, and plant available water capacity. The relative importance of these factors varies depending on climate, soil, and vegetation conditions. Results from over 250 catchments worldwide show that for a given forest cover, there is a good relationship between long-term average evapotranspiration and rainfall. A simple twoparameter model was developed that relates mean annual evapotranspiration to rainfall, potential evapotranspiration, and plant available water capacity. The mean absolute error (MAD) in the ratio of evapotranspiration to rainfall between the model and field data is 6 %, and the root mean squared error (RMSE) is 8 %. The model showed potential for a variety of applications including water yield modelling and recharge estimation. The model is a practical tool that can be readily used for assessing the effect of vegetation changes on catchment average water balance and is scientifically justifiable.

# **Acknowledgments**

This study was partially supported by an ACIAR grant "Regional Water and Soil Assessment for Managing Sustainable Agriculture" and an NRMS-LWWRDC grant "Improving Dryland Salinity Management through Integrated Catchment Scale Management" (NRMS grant D6026). We would like to thank Trevor Abell for providing vegetation cover information for Malawi catchments. We thank Rob Vertessy and Q.J. Wang for valuable comments on a draft of this report.

| 1 | Introduction                                | 1  |
|---|---------------------------------------------|----|
| 2 | Vegetation and Hydrological Processes       | 3  |
|   | 2.1 Catchment water balance                 | 3  |
|   | 2.2 Rainfall interception and evaporation   |    |
|   | from wet canopies                           | 3  |
|   | 2.3 Evapotranspiration                      | 4  |
| 3 | Development of a Simple Water Balance Model | 13 |
|   | 3.1 Data description                        | 13 |
|   | 3.2 Simple water balance model              | 13 |
| 4 | Discussion                                  | 21 |
| 5 | Conclusions                                 | 23 |
| 6 | Bibliography                                | 25 |
| A | ppendix A: A summary of worldwide catchment |    |
|   | water balance studies. Annual rainfall (P), |    |
|   | runoff (Q), and evapotranspiration (ET) are |    |
|   | average values.                             | 31 |

COOPERATIVE RESEARCH CENTRE FOR **CATCHMENT HYDROLOGY** 

# 1 Introduction

A large number of field experiments have been conducted to quantify the impact of vegetation changes on the water balance of catchments and have shown such changes to be important. The change in water balance is dependent on a number of factors including the spatial pattern of vegetation, soils, groundwater, and rainfall pattern. It is difficult and expensive to gather such data on catchments of any significant size. Yet, knowledge of these relationships is critical for land management.

Sources of information on the water balance associated with vegetation change generally fall into two categories. The first involves the "pairedcatchment experimental techniques". This method is based on two similar catchments which are studied for a calibration period; then one catchment is subject to a change (i.e. clearing), and the other remains unchanged (i.e the 'control'). Paired catchment studies try to minimise differences between control catchments and treated catchments in terms of rainfall, soil, topography, and other factors that may influence catchment water balance. Hibbert (1967) reviewed results from 39 such experiments. Bosch and Hewlett (1982) updated Hibbert's review to include an additional 55 catchments. Results from these experiments showed a large variation in catchment responses to changes in vegetation cover. However, a clear conclusion was that reduction of forest cover increases water yield.

The second source of information on the impact of vegetation comes from hydrological studies. These studies were not specifically designed to examine the effects of vegetation on water yield, but the fact that they represent catchments with diverse climate, vegetation, and soil can provide useful information about the role of vegetation in catchment water balance.

From these studies, it is clear that the largest hydrological impacts often arise from afforestation and deforestation (Calder, 1996), the later often leading to major environmental problems such as salinity. In southern Australia, salinity is recognised as one of the most serious environmental degradation issues, with up to 30 % of large areas being predicted to become affected by salt (CSIRO, 1999). It also affects stream water quality (Walker et al., 1998). Salinity is caused by massive clearing of native vegetation and its replacement by shallow-rooted annual crops and pastures. The removal of the forest reduces evapotranspiration and increases groundwater recharge. As groundwater levels rise, this leads to salt accumulation in the root zone in some areas. The clearing of native vegetation is also likely to lead to increased stream flow, which not only increases water supply, but also helps to dilute salt inflows.

The degree to which salt inputs are offset by 'dilution' flows depends on the rainfall zone. If the same amount of salt was exported from two catchments, but one had higher annual rainfall and yielded more stream flow, the concentration of salt would be lower, because of greater dilution. However a relatively small increase in stream flow will result in a significant increase in salt export due to the large absolute amount of flow. In medium rainfall zones (500-800 mm/yr), there are usually high concentrations of salt in the stream flow and groundwater system. While the absolute amount of water exported may be small, the change in concentration can increase by an order of magnitude or more, leading to a similar change in salt balance. The commercial viability of plantations also changes through these zones, and is generally sub-economic for lower rainfall zones. The ability of non-tree land uses to reverse the change in water balance also varies across these rainfall zones. With higher rainfall, it is expected that any pasture or cropping system will use much less water than trees. However, for the lower rainfall zones, some perennial systems may use approximately the same amount of water as trees.

Given the above, it can be seen that developing a sustainable land management system involves tradeoffs between economic viability, environmental sustainability and water resource security. Thus, in order to determine the trade-offs, it is important to understand the water balance-vegetation relationships through the different parts of the landscape. Salinity is obviously not the only issue for which the water balance and vegetation relationship is important. Water resource security in relation to plantations is important in Australia and other parts of the world.

The purpose of this report is twofold: (1) to review the state-of-the-art on the hydrological role of vegetation, in particular the impact of vegetation changes on mean annual evapotranspiration, and (2) to develop a simple water balance model that describes the effect of vegetation change on mean annual evapotranspiration. The data used in this report came from both forestry and hydrological literatures and they represent diverse climate, soil, and vegetation conditions. There is no attempt in this report to partition between run-off and recharge, only to calculate the water available for either. We also do not attempt in this report to predict changes in flow regimes, focusing instead on mean annual water yield. In developing these relationships, it is important that we use data that are appropriate for the scale of investigation, that can be scientifically validated, and have appropriate vegetation types.

# 2 Vegetation and Hydrological Processes

The natural circulation of water in the soil-vegetationatmosphere continuum is an important process and it is central to the energy, carbon, and solute balances of the system. There are many pathways that water may take in its continuous cycle of falling as rainfall and returning to the atmosphere as evapotranspiration. It may be intercepted by vegetation and evaporated directly to the atmosphere. It may infiltrate into the soil to be evaporated from the soil surface or be transpired by vegetation. It may become surface runoff and it may percolate through the soil to groundwater as recharge. Vegetation plays an important role in the hydrological cycle through the exchange of energy, water, carbon, and other substances. In what follows we will review the key hydrological processes and the impact of vegetation on catchment water balance.

#### 2.1 Catchment water balance

The concept of the water balance provides a framework for studying the hydrological behaviour of a catchment and it can be used to identify changes in water balance components. The water balance for a catchment can be written as

$$P = ET + R + D + \Delta S \tag{1}$$

where *P* is precipitation, *ET* is evapotranspiration, *R* is surface runoff measured as streamflow, *D* is recharge to groundwater, and  $\Delta S$  is the change in soil water storage.

Precipitation is the largest term in the water balance equation and it varies both temporally and spatially. For most of the hydrological applications, the orographic effect of vegetation on precipitation can be ignored and it is appropriate to assume that precipitation is independent of vegetation types. However, some studies using General Circulation Models (GCMs) suggest that on a continental scale forests may affect precipitation (Rowntree, 1988; Institute of Hydrology, 1994; Xue, 1997). Evapotranspiration is the second or third largest term in the water balance equation and it is closely linked with vegetation characteristics. In arid and semi-arid regions, evapotranspiration is often nearly equal to precipitation. Surface runoff is also an important component of the water balance and it can be generated when the soil is saturated with water or when rainfall intensity exceeds infiltration capacity. Surface runoff is affected by the presence of vegetation through rainfall interception and evapotranspiration. On an annual basis, surface runoff will generally show good correlation with annual rainfall, particularly in areas with winter dominant rainfall (Budyko, 1974). Recharge is the amount of infiltrated water that reaches a specific groundwater system and it occurs when too much water is available to be used by vegetation or to be stored in the root zone. Recharge is generally the smallest term in the water balance and usually inferred from precipitation and evapotranspiration measurements. The last term in the water balance equation is the change in soil water storage. Over a long period of time (*i.e* 5 to 10 years), it is reasonable to assume that changes in soil water storage are zero. Recharge and change in soil water storage is often only 5 to 10 % of the annual water balance. Therefore, it is expected that a change in annual surface runoff associated with land use changes such as afforestation or deforestation should be reflected in annual evapotranspiration.

# **2.2** Rainfall interception and evaporation from wet canopies

Rainfall interception by vegetation is an important hydrological process, especially in forested catchments. The intercepted water may be retained on leaves, flow down the plant stems to become stemflow, or drop off the leaves to become part of the throughfall, or be evaporated from wet canopy surface during the period of storm. The sum of stemflow and throughfall is considered to be net rainfall. The difference between gross rainfall and net rainfall is called the interception loss, which is the sum of water stored on canopy surface and evaporation from a wet canopy. Initially much of the rainfall is retained on the canopy surface and there appears to be a well defined storage capacity, which is related to canopy leaf area, leaf configuration (i.e. surface tension, leaf orientation), and rainfall intensity. Evaporation loss during the storm period may be an important component of the interception process. The relationship can be expressed as following (Horton, 1919)

$$I = S + \alpha t \tag{2}$$

where *I* is the total interception loss during a storm, *S* is the canopy storage capacity,  $\alpha$  is the rate of evaporation during the storm period, and *t* is the duration of the storm. From Eq. (2) it is evident that the total interception increases as canopy storage and duration of the storm increase.

Rainfall interception is a complex process and affected by a number of factors such as canopy characteristics and rainfall regime. Detailed studies of interception processes require accurate and frequent measurements. In practice, such data are not always available. However, for most catchment water balance modelling the interception process can be approximated using a simple equation. A recent study has shown that Eq. (2) is reliable for describing interception process (Gash, 1979).

Interception processes affect redistribution of rainfall in the system and there is large variation in interception loss among different vegetation types. A number of experiments have been conducted to estimate the interception characteristics of different vegetation types and these results are summarised in Table 1

It is evident that the proportion of rainfall intercepted by vegetation varies considerably between species. On average, pine forests intercept 28 % of rainfall compared to 14 % for eucalyptus forests based on Table 1. Short grass and crops intercept 20 to 48 % of rainfall during the growing season. However, on an annual basis the percentage is much smaller compared to forests. The interception values shown in Table 1 were obtained under different climate and vegetation conditions. The absolute values may not be accurate and may vary from year to year depending on the nature of rainfall. However, these values are useful for catchment scale water balance modelling.

#### 2.3 Evapotranspiration

Evapotranspiration is an important component of the hydrological cycle and the physics of the process is well understood. There are many equations for calculating evapotranspiration and one of the most commonly used is the Penmen-Monteith equation, which is based on energy balance and aerodynamic transport. The equation also considers the effect of water availability on evapotranspiration through canopy resistance. The Penman-Monteith equation enjoys wide application and can be used to analyse the effect of these controls on evapotranspiration from different vegetation types. For this purpose, we can write the Penman-Monteith equation in the following form

$$ET = \Omega \frac{s}{s+\gamma} (R_n - G) + (1 - \Omega) \frac{\rho c_p D_m}{\gamma r_s}$$
(3)

$$\Omega = (\varepsilon + 1) / \left[ \varepsilon + 1 + \left( r_s / r_a \right) \right]$$
(4)

where  $\Omega$  is the decoupling coefficient, s is the slope of the saturation vapour pressure curve,  $\gamma$  is the psychometric constant,  $\varepsilon$  is  $s/\gamma$ ,  $R_n$  is the net radiation, G is the ground heat flux,  $\rho$  is the air density,  $C_p$  is the specific heat of air,  $D_m$  is the vapour pressure deficit,  $r_s$  is the surface resistance,  $r_a$  is the aerodynamic resistance, which is a function of roughness length. The first term on the RHS of Eq. (3) represents the available energy for evapotranspiration and is commonly known as the energy term, while the second term represents the effect of turbulent transport on evapotranspiration, known as the aerodynamic term.

The decoupling coefficient indicates the relative importance of the energy term. Jarvis and McNaughton (1986) showed that forest generally has smaller decoupling coefficient than short grass and crops. This implies that forests are very closely coupled to the atmosphere above and that the evapotranspiration rate is thus dominated by the aerodynamic term.

For wet canopies, the rate of evaporation of intercepted rainfall can be a significant component of the catchment water balance. Studies have shown that

| Species                    | I/P (%) | Reference                         |
|----------------------------|---------|-----------------------------------|
| Acacia aneura              | 13.0    | Pressland (1973)                  |
| Acacia harpophylla         | 15.2    | Tunstall (1973)                   |
| Aegle maramelos            | 13.1    | Yadav and Mishra (1985)           |
| Agropyron koeleria         | 22.3    | Couturier and Ripley (1973)       |
| Bouteloua curtipendula     | 18.1    | Thurow et al. (1987)              |
| Clover                     | 40.0    | Wollny (1890)                     |
| Crosotebush                | 12.2    | Tromble (1988)                    |
| Digitaria deceumbens       | 15.5    | Acevedo et al. (1993)             |
| Douglas fir                | 34.1    | Aussenac and Boulangeat (1980)    |
| Eucalyptus                 | 8.3     | Pook et al. (1991)                |
| Eucalyptus camadldulensis  | 14.3    | Heth and Karschon (1963)          |
| Eucalyptus Regnans         | 23.3    | Langford and O'Shaughnessy (1978) |
| Eucalyptus Rossii          | 10.6    | Smith (1974)                      |
| Eucalyptus Obliqua         | 15.0    | Feller (1981)                     |
| Hilaria belangeri          | 10.8    | Thurow et al. (1987)              |
| Maize                      | 29.1    | Schmidt and Mueller (1991)        |
| Maize                      | 54.5    | Wollny (1890)                     |
| Mixed conifer and hardwood | 22.0    | Moul and Buell (1955)             |
| Montane rain forest        | 18.2    | Veneklaas et al. (1990)           |
| Notjofagus solandri        | 38.6    | Rowe (1975)                       |
| Oats                       | 48.3    | Schmidt and Mueller (1991)        |
| Oats                       | 20.5    | Wollny (1890)                     |
| Pinus canariensis          | 28.0    | Kittredge et al (1941)            |
| Pinus elliottii Engelm     | 38.1    | Johansen (1964)                   |
| Pinus radiata              | 26.5    | Pook et al. (1991)                |
| Pinus rigida               | 19.1    | Kim and Woo (1988)                |
| Pinus roxburghii           | 33.5    | Dabral and Subba Rao (1968)       |
| Pinus wallichiana          | 21.0    | Singh and Gupta (1987)            |
| Rain forest                | 8.9     | Lloyd et al. (1988)               |
| Rain forest                | 27.0    | Sollins and Drewry (1970)         |
| Shorea robusta             | 35.4    | Ray (1970)                        |
| Soya beans                 | 32.0    | Wollny (1890)                     |
| Sugarbeet                  | 47.3    | Schmidt and Mueller (1991)        |
| Tarbush                    | 6.1     | Tromble (1988)                    |
| Wheat                      | 33.2    | Leuning et al. (1994)             |
| Neopanax arboreum scrub    | 27.0    | Wells and Blake (1972)            |
| Cypress                    | 26.0    | Pereira (1952)                    |
| Bamboo                     | 20.0    | Pereira (1952)                    |
| Spruce                     | 28.0    | Delfs et al. (1958)               |

Table 1. Interception loss (I) as a percentage of gross annual rainfall (P) for selected vegetation types

evaporation rate from wet forest canopies may be several times higher than that from dry canopies and the energy required can exceed net radiation by a large amount as a result of advection (Monteith, 1965; Rutter, 1967; Stewart, 1977, Calder, 1982). For short grass and crops, wet canopy evaporation exceeds net radiation by only a small amount (McMillan and Burgy, 1960; McIlroy and Angus, 1964; McNaughton and Jarvis, 1983). The difference in wet canopy evaporation between forests and short grass is likely to be a major factor in the water balance of forested and non-forested catchments.

The rate of transpiration from a dry canopy is controlled by net radiation, canopy resistance, vapour pressure deficit, and atmospheric turbulence. The relative transpiration rate (ET/Eo) (i.e. actual to potential) depends only on air temperature and the ratio of surface to aerodynamic resistance (Eq. (3)). Monteith (1965) showed that for short vegetation such as grass and field crops,  $r_s/r_a$  is much smaller than for tall vegetation such as forest. *Figure 1* shows the dependence of the relative transpiration rate on canopy resistance. It is clear that for short vegetation even large values of canopy resistance (i.e. 100 s/m) do not reduce the transpiration rate much below the potential evapotranspiration. In contrast, for forests small values of canopy resistance (i.e. 30 s/m) may reduce the transpiration rate well below its potential rate. In other words, forests are more sensitive to changes in canopy resistance than short grass. However, this does not necessarily mean that the transpiration rate of forest is always less than that of grass because trees can access soil moisture from greater depth and maintain a relatively constant transpiration rate even during dry seasons compared to short grass.

In what follows, we will review other factors that affect catchment evapotranspiration.

#### Surface albedo and Net radiation

Net radiation is the primary source of energy for evapotranspiration, but in some cases the effect of advection can be significant. Net radiation is composed of four components: downwards shortwave radiation from the sun; upward short-wave radiation reflected from the surface; downwards longwave radiation emitted from the atmosphere; and upward long-wave radiation emitted from the surface.



*Figure 1:* Dependence of the ratio of actual to potential evapotranspiration (ET/Eo) on surface resistance( $r_s$ ). Values of aerodynamic resistance  $r_a$  was set to 10 and 50 s/m for forest and grass respectively; curve 1 and 3 for air temperature of 25°C; curve 2 and 4 for air temperature of 30 °C.

The downward short-wave radiation is the radiant flux resulting directly from the solar radiation and is independent of surface conditions. The upward shortwave radiation is a significant term in the surface radiation balance and is strongly affected by the reflection coefficient or albedo of the surface. For most short pasture and agricultural crops, albedo is about 0.25. Forests tend to have lower albedo of 0.15 (Brutsaert, 1982, Monteith, and Unsworth, 1992). Representative values of albedo for various vegetation species are listed in Table 2. The difference is mainly because tall vegetation is more able to absorb short-wave radiation by multiple reflections within the canopy.

The downward long-wave radiation is a function of air temperature and water vapour content. The upward long-wave radiation is determined by surface temperature and emissivity. The net long-wave radiation is effectively a small difference between two large numbers and the errors are much less serious than errors in albedo for calculating evapotranspiration.

The foregoing discussion indicates that net radiation is generally higher for forests than for grass and crops mainly because forests have lower albedo values. For example, Moor (1976) found that average net radiation of pine (pinus radiata) forest was 24% higher than that of nearby grassland. Field measurements during the HAPEX-MOBILY experiment showed that net radiation of pine forest was 20% higher than that of crops (Noilhan et al., 1991).

### Advection

There is strong evidence to suggest that advection is an important factor in controlling forest evapotranspiration (McNaughton and Black, 1973; Jarvis and Stewart, 1979; McNaughton and Jarvis, 1983; Calder, 1996). When advection occurs dry air is introduced over an area, the vapour pressure deficit will increase and it will cause enhancement of evapotranspiration. When moist air is advectively introduced, it will reduce evapotranspiration. Quantifying the effect of advection on forest evapotranspiration has not been easy because it may occur on different scales and the process is not well understood. The effect of advection on short grass and crops is much less important because they are strongly decoupled from the atmosphere and the rates

**Table 2.** Representative values of albedo for various vegetation species

| Surface                 | Albedo | Reference                                  |
|-------------------------|--------|--------------------------------------------|
| Rain forest             | 0.15   | Lee (1980), Dingman (1994)                 |
| Eucaluptus              | 0.20   | Lee (1980), Dingman (1994)                 |
| Red pine forest         | 0.10   | Lee (1980), Dingman (1994)                 |
| Mixed hardwoods         | 0.18   | Lee (1980), Dingman (1994)                 |
| Spruce-fir              | 0.10   | Lee (1980), Dingman (1994)                 |
| White-red-jack pine     | 01.0   | Lee (1980), Dingman (1994)                 |
| Loblolly-shortleaf pine | 0.12   | Lee (1980), Dingman (1994)                 |
| Longleaf-slash pine     | 0.12   | Lee (1980), Dingman (1994)                 |
| Maple-beech-birch       | 0.19   | Lee (1980), Dingman (1994)                 |
| Oak-pine                | 0.15   | Lee (1980), Dingman (1994)                 |
| Aspen-birch             | 0.20   | Lee (1980), Dingman (1994)                 |
| Oak-hickory             | 0.18   | Lee (1980), Dingman (1994)                 |
| Grass                   | 0.24   | Gates (1980), Monteith and Unsworth (1992) |
| Barley                  | 0.23   | Gates (1980), Monteith and Unsworth (1992) |
| Wheat                   | 0.26   | Gates (1980), Monteith and Unsworth (1992) |
| Maize                   | 0.22   | Gates (1980), Monteith and Unsworth (1992) |
| Pasture                 | 0.25   | Gates (1980), Monteith and Unsworth (1992) |
| Cotton                  | 0.15   | Gates (1980), Monteith and Unsworth (1992) |
| Sugar cane              | 0.21   | Gates (1980), Monteith and Unsworth (1992) |
| Tomato                  | 0.23   | Gates (1980), Monteith and Unsworth (1992) |

of evapotranspiration are more closely controlled by available energy.

#### Vapour pressure deficit and canopy resistance

It has been recognised that a biological system differs from a physical system in that it can respond to changes in environment and even sense difficult conditions before they have developed (Passioura and Stirzaker, 1993). The biological control on transpiration is often represented by stomatal resistance or canopy resistance. It is known that plant stomata respond to changes in environmental variables such as light, water availability, and temperature. An increase in vapour pressure deficit would increase evapotranspiration which in turn would increase leaf water potential and cause the stomata to close. This is often called the indirect effect or a feedback response (McNaughton and Jarvis, 1983). Plants can also close the stomata at large vapour pressure deficits to prevent high rates of evapotranspiration before there has been any reduction in leaf water potential. This represents a feedforward response or direct effect of vapour pressure deficit on evapotranspiration. It is possible that both responses exist in majority of plants and the net effect of vapour pressure deficit on evapotranspiration depends on which process is dominant. Several studies have suggested that sensitivity of the response varies with plant species and environmental conditions (McNaughton and Jarivs, 1983). For example, Schultze and Kuppers (1979) showed that transpiration from hazel plants increases with increasing relative vapour pressure deficit and it starts to decrease when relative vapour pressure deficit exceeds 25 mbar/bar. In other studies, it has been reported that transpiration rate is independent of vapour pressure deficit (Tan and Black, 1976; Kaufman, 1979), arguing that trees respond more to energy than to vapor pressure deficits.

Forests are strongly coupled to the atmosphere above and are aerodynamically efficient in turbulent transport. As a result, transpiration from forests is chiefly controlled by the vapour pressure deficit and canopy resistance. For short grass and crops, evapotranspiration is determined principally by net radiation and the effect of canopy resistance is relatively small. The forgoing discussion indicates that vapour pressure deficit and canopy resistance will have significant effects on forest evapotranspiration. It is clear that the cause of change in stomatal closure is a change in leaf water potential, but the interactions and feedback between plants and external variables is complex and there is no appropriate framework available for analysing these processes.

#### **Roughness length and turbulent transport**

Turbulent transport is the primary process responsible for the exchange of water vapour between the surface and the atmosphere. While much of the turbulence in the atmosphere is produced by the frictional retardation of wind blowing horizontally over a surface, the intensities of the turbulence are also affected by temperature gradients. The effectiveness of turbulent transport can be deduced from wind speed and a knowledge of surface roughness. One way of describing turbulent transport is to use aerodynamic resistance given by

$$r_{a} = \{\ln\left(\frac{z-d}{z_{o}}\right) - \Psi\}^{2} / (k^{2}u)$$
(5)

where z is the reference height, d is the zero displacement height,  $z_o$  is the roughness length of the surface,  $\Psi$  is the stability function, k is the von Karman constant, and u is the wind speed. Under neutral conditions (i.e. no vertical temperature gradient), the aerodynamic resistance is a function of roughness length and wind speed. For short grass, the roughness length is about 0.01 m, while for forests it is in the order of 1.0 m. If we assume a constant wind speed of 2 m s<sup>-1</sup>, the corresponding aerodynamic resistance varies between 75 to 5 s m<sup>-1</sup>. For relatively wet canopies, evapotranspiration occurs freely from the surface and it is mainly controlled by the degree of turbulence in the atmosphere. Zhang and Dawes (1995) found that under this condition the aerodynamic resistance can affect evaporation significantly and increasing aerodynamic resistance from 10 to 70 s m<sup>-1</sup> could lead to 40 % reduction in evaporation. However, the effect of turbulent transport on evapotranspiration becomes less important when canopies are dry. Webb (1975) studied the effect of the aerodynamic resistance on

evapotranspiration under neutral and non-neutral conditions. He showed that evapotranspiration rate from forests is higher than that from grass even under unstable atmospheric conditions.

#### Leaf area

The amount of water that a plant transpires is related to its leaf area. Leaf area affects interception of rainfall, radiation, and defines the canopy area available for evapotranspiration. In dryland agriculture, total water use by any plants depends primarily on the temporal distribution of active green leaf area and rainfall. When active green leaf area and rainfall are in phase, plants are likely to use more water and develop larger leaf area. However, when they are out of phase, part of rainfall will be stored in the soil and the ability of the plants to explore this water is limited by rooting depth. The period of evapotranspiration from annual plants is restricted to the growing season and hence annual plants are unable to use rain that falls outside the growing season. Perennial plants generally use more water than annuals because they keep their leaves green and actively transpire for much longer.

When available water is not limiting, the ratio of actual to potential evapotranspiration for crops and pastures increases exponentially with its leaf area index until canopy closure occurs (Ritchie and Burnett, 1971; Choudhury and Monteith, 1988; Choudhury et al., 1994). The relationship resembles Beer's Law for radiation partitioning and it suggests that the available energy is the controlling factor under this condition. A number of studies also reported that total annual evapotranspiration from forests is similarly related to leaf area index (Greenwood et al. 1982; Dunin and MacKay, 1982). Specht and Specht (1989) studied relationships between evaporative coefficient and leaf area index for evergreen Eucalyptus dominated openforest/woodland communities under different climatic zones. They found that the evaporative coefficient increases exponentially with leaf area index (Fig. 2). The evaporative coefficient indicates the rate of change of actual evapotranspiration per unit change in available water. A high value of the evaporative coefficient usually means low canopy resistance to water movement through the plant, and therefore more transpiration. Wullschleger et al (1998) reviewed 52 published studies on tree water use using different techniques and also showed that tree water use increases with leaf area. Under relatively dry conditions, the same relationships are expected, with the asymptote a result of limited water supply.



*Figure.* 2: Relationship between leaf area index of the overstorey of mature climax plant communities and the evaporative coefficient (adapted from Specht and Specht, 1989)



*Figure. 3:* Typical soil moisture profiles and plant available water capacity for two soil types under different plants (adapted from Greacen and Williams, 1983). Solid lines represent upper and lower limits of the soil water store. Numbers on figure refer to stored water expressed in mm.

#### Rooting depth and Plant available water capacity

Deep roots are ecologically significant in terms of water and carbon fluxes. During wet seasons, plants extract most water from shallow layers where the root density is the highest. As the soil dries progressively, more water is extracted from deeper layers to keep stomata open. Rooting depth determines the soil volume which plantsf are able to draw water from and together with soil hydraulic properties, it defines the plant available water capacity.

Tennant (1976) showed that the plant available water of wheat in five different soils depended more on the rooting depth than it did on the soil hydraulic properties. The depth and distribution of plant roots is affected by a number of factors such as physical barriers, chemical barriers, and nutrient distribution. When soil physical properties such as porosity, pore sizes, strength, and root channels are unfavourable to water and oxygen supply, plant growth can be severely limited. Canadell et al.(1996) showed that average maximum rooting depth was about 7 m for trees, and 2.6 m for herbaceous plants. Such a difference in average maximum rooting depth will translate into 540 mm difference in plant available water for sandy soils, and up to three times this amount for loamy and clayey soils. Therefore, it is expected that rooting depth will contribute to differences in evapotranspiration between forests and herbaceous plants.

Greacen and Williams (1983) reported the plant available water for some important Australian soils. For example, in a deep red earth under eucalypt woodland, the plant available water was about 360 mm, although its water holding capacity was relatively low (Fig. 3). On the other hand, for a grey clay under irrigated pasture, the profile was relatively shallow but with high water holding capacity, the plant available water was only 137 mm. As shown in Fig. 3, deep-rooted plants (i.e. trees) generally have larger storage capacity compared to shallow-rooted plants (i.e. short grass and crops). The differences in both magnitude of the plant available water and its profile water store will affect plant transpiration.

When available energy is not limiting, the amount of water plants can transpire is determined by plant available water in the soil profile. Hodnett et al. (1995) showed that during wet seasons evapotranspiration of a terra firme type forest was very similar to that of pasture (Brachiaria decumbens) in Central Amazonia and the soil moisture under the two vegetation types showed little difference. However, in the dry seasons the forest sustained a higher evapotranspiration rate compared to the pasture and the difference was attributed to the ability of the trees to access soil moisture from greater depth. Nepstad et al. (1994) found that soil water stored below 2 m provided over 75% of total water extracted from the entire soil profile. This indicates that deep roots play an important role in plant water uptake.

In summary, catchment evapotranspiration is a complex process and it is affected by rainfall interception, net radiation, advection, turbulent transport, canopy resistance, leaf area, and plant available water capacity. Under dry conditions, the principal controls on evapotranspiration are plant available water capacity and canopy resistance, and actual evapotranspiration is only a small fraction of the potential evapotranspiration. Under wet conditions, the dominant controls are advection, net radiation, leaf area, and turbulent transport. Under intermediate conditions, the relative importance of these factors is likely to vary depending on climate, soil, and vegetation. The challenge in modelling catchment scale evapotranspiration is to be able to represent these processes and factors in a simple fashion allowing practical prediction of the effect of vegetation changes on evapotranspiration.

COOPERATIVE RESEARCH CENTRE FOR **CATCHMENT HYDROLOGY** 

# 3 Development of a Simple Water Balance Model

#### 3.1 Data description

As stated earlier, the data used in this report were obtained from two sources: catchment water balance studies and paired-catchment studies. There are some noticeable differences between these two types of studies. The catchment water balance studies focused on relationships between rainfall, runoff, and evapotranspiration. These are generally large catchments with good quality rainfall and runoff data over a long period of time. However, information on vegetation type and cover is not ideal for our purpose, but it provides value. The paired-catchment studies generally involved small catchments (< 100 km<sup>2</sup>) and the main objective was to detect changes in catchment water yield (i.e. precipitation minus evapotranspiration) after afforestation or deforestation. There is detailed information available on vegetation type and cover from these studies. In order to be able to draw some general conclusions about the impact of vegetation on catchment water balance from these studies, we selected catchments with the following characteristics:

- Rainfall is the dominant form of precipitation in the catchments
- Slopes of the catchments are gentle
- Soil depth is relatively thick (> 2m)

Given that detailed information on vegetation is not available for all the catchments concerned, especially large catchments, we will use the following terms to describe vegetation types:

- Herbaceous plants
- Mixture of herbaceous plants and trees
- *Forest* (> 70 % *of canopy cover*)

Most of the catchments used in this study have long records of annual rainfall and streamflow data, from which we were able to obtain average annual evapotranspiration by assuming zero soil water storage change. In a few catchments, evapotranspiration was measured directly (see Appendix A). The size of the catchments varied from less than 1 km<sup>2</sup> to 600,000 km<sup>2</sup>. These catchments span a variety of climates including tropical, dry, and warm temperate. Mean annual rainfall in these catchments varied from 35 mm to 2978 mm and the seasonal distribution was variable. For examples, Calder et al. (1986) described the Janlappa catchment of Indonesia as a wet tropical rain forest catchment with mean annual rainfall of 2851 mm. Ni-Lar-Win (1994) reported some sub-tropical catchments in China with over 80% of annual rainfall occurring between April and September. This is in contrast to the catchments reported by Silberstein et al (1999) with warm Mediterranean climates in Western Australia. Jolly et al (1997) showed catchments from the Murray-Darling Basin in eastern Australia, with mainly uniform and summer-dominant rainfall patterns with mean annual rainfall of between 450 and 1150 mm. Farquharson et al (1996) studied catchments in Yemen under extremely dry climate.

The vegetation ranges from even-aged plantations to native woodlands, open forests, rainforest, eucalyptus, various species of pine trees and conifers, through to native and managed grassland and agricultural cropping. Soil descriptions were not routinely included in the reviewed papers, since for catchment studies the problem of spatial variation can make a simple descriptor misleading. The sheer variation in geographical location and climatic regime in the data however, must cover most of the spectrum of soil types, from sand, through loams to clays.

#### 3.2 Simple water balance model

In the previous sections, we reviewed the key processes and factors associated with catchment water balance, particularly evapotranspiration. It is a common practice to combine these factors by considering their net effects. One way of approaching catchment evapotranspiration is to assume that evapotranspiration from land surfaces is controlled by water availability and the atmospheric demand. The water availability can be approximated by precipitation, the atmospheric demand represents the maximum possible evapotranspiration and is often considered as potential evapotranspiration. Under very dry conditions, potential evapotranspiration exceeds precipitation and the actual evapotranspiration will be equal to precipitation.

Under very wet conditions, water availability exceeds potential evapotranspiration and actual evapotranspiration will asymptotically approach the potential evapotranspiration. Based on these considerations, Budyko (1974) postulated that the following relationships are valid under very dry conditions

$$\frac{R}{P} \rightarrow 0 \quad or \quad \frac{ET}{P} \rightarrow 1 \quad when \quad \frac{R_n}{P} \rightarrow \infty$$
 (6)

where R is surface runoff, P is precipitation, ET is evapotranspiration,  $R_n$  is net radiation, and under very moist conditions

$$ET \to R_n \qquad when \ \frac{R_n}{P} \to 0$$
 (7)

These two limits are represented by BC and AB in *Fig. 4*. It should be noted that Budyko (1974) used net radiation  $(R_n)$  to represent potential evapotranspiration and in what follows we will use potential evapotranspiration  $(E_o)$  instead of net radiation  $(R_n)$ .

The dimensionless function (F) that satisfies condition (6) and (7) must take the following form

$$\frac{ET}{P} = F\left(\frac{E_o}{P}\right) \tag{8}$$

As stated earlier, the plant available water capacity plays an important role in maintaining transpiration during dry seasons. A number of studies have shown that it is primarily responsible for greater transpiration rate from forests compared to pasture and crops (Tuner, 1991, Hodnett et al., 1995). It is clear that the largest difference in transpiration will be in the plant available water capacity because of large differences in rooting depth. Milly (1994) hypothesized that the long-term water balance is determined by the local interaction of fluctuating water supply and demand, mediated by water storage in the soil. For the purpose of predicting the effect of vegetation changes on evapotranspiration, we introduced a second factor to represent plant available water capacity. This relationship can be expressed in dimensionless form as

$$\frac{ET}{P} = F\left(\frac{E_o}{P}, w\right) \tag{9}$$

It can be shown that the following equation satisfies conditions (6) and (7)

$$\frac{ET}{P} = \frac{1 + w \frac{E_o}{P}}{1 + w \frac{E_o}{P} + \left(\frac{E_o}{P}\right)^{-1}}$$
(10)

where w is the plant available water coefficient.

It should be pointed out that Eq. (10) is a semiempirical relationship and the plant available water coefficient (w) and potential evapotranspiration  $(E_{\alpha})$ can be considered as model parameters. The plant available water coefficient represents the ability of plants to store water in the root zone for transpiration. We posit that it should vary between 0.5 to 2.0 for plants and larger values of the plant available water coefficient tend to promote evapotranspiration. For forests, the value was found to be close to 2.0, while for short grass and crops the value was close to 0.5. For bare soil, the plant available water coefficient simply represents the relative water stored in the soil that can be evaporated directly from the surface. It is expected that the value of w is close to 0.1. The sensitivity of the ratio of mean annual evapotranspiration to rainfall with respect to the plant available water coefficient is shown in Fig. 4. The effect of the plant available water coefficient on evapotranspiration is minimal under both very dry and very wet conditions. The reason that the plant systems become insensitive to changes in water storage is due to the fact that under these two extreme conditions evapotranspiration is dominated by rainfall and available energy. The maximum difference in the ratio of evapotranspiration to rainfall between trees and herbaceous plants occurs when annual rainfall equals to the atmospheric demand (i.e  $E_0/P = 1.0$ ). Under this condition, the ability of trees to exploit a greater depth in soils allows them to use water that has been stored during the times they are least active, while shallower rooted herbaceous plants may allow that water to escape their root zone.



*Figure. 4:* Ratio of mean annual evapotranspiration to rainfall as a function of the index of dryness  $(E_o/P)$  for different values of plant available water coefficient (*w*).

A number of relationships have been developed based on the assumption that evapotranspiration is limited by available water (i.e. rainfall) under very dry conditions and available energy (i.e. potential evaporation) under very wet conditions. A list of these equations is given in Table 3. A comparison of these relationships with Eq. (10) is shown in *Fig. 5*. It is clear that Eq. (10) is in good agreement with these empirical relationships. With the plant available water coefficient set to 1.0, Eq. (10) yielded better agreements with these curves.

Despite its semi-empirical nature, the functional form of Eq. (10) was found to be in good agreement with the data listed in Appendix A and shown in *Fig. 6*. The mean absolute error (MAE) in the ratio of evapotranspiration to rainfall (ET/P) between observation and Eq. (10) is 6%, and the root mean square error (RMSE) is 8%. In this comparison, the plant available water coefficient (w) was set to 2.0 for forest, 1.0 for mixed vegetation, and 0.5 for pasture. The potential evapotranspiration  $(E_0)$  was calculated using the equation of Priestley and Taylor (1972). An attempt was made by Milly (1994) to develop a theoretical model which incorporates soil water storage, rainfall seasonality, and other factors. For a mid-latitude location and assuming an exponential distribution of soil water storage, his model yielded similar results as Eq. (10) (see Fig. 6).

Equation (10) is a dimensionless function and it can be used to calculate actual evapotranspiration when rainfall and potential evapotranspiration are known. A comparison of observed and calculated evapotranspiration from Eq. (10) is shown in *Fig.* 7. The mean absolute error (MAE) between the model estimates and measurements is 27 mm or 4.0 %. The correlation coefficient is 0.92 and the best-fit slope through the origin is 1.04.

Table 3. Description of different relationships for estimating annual evapotranspiration

| Equation                                        | Symbol                                                                                                 | Reference        |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------|
| $ET = P[1 - exp(-E_0/P)]$                       | <i>ET</i> is annual evapotranspiration;<br><i>P</i> is annual rainfall, $E_0$ is potential evaporation | Schreiber (1904) |
| $ET = P / [1 + (P / E_0)^2]^{0.5}$              | As above                                                                                               | Pike (1964)      |
| $ET = [P(1-exp(-E_0/P)) E_0 tanh(P/E_0)]^{0.5}$ | As above                                                                                               | Budyko (1974)    |



Figure. 5: Comparison of Eq. (10) with the relationships developed by Schreiber (1904), Pike (1964), and Budyko (1974).



*Figure. 6:* Comparison of Eq. (10) with measurements for catchments with different vegetation covers. Also shown is curve of Milly (1994).



Figure. 7: Scatter plot of the observed and calculated evapotranspiration for the catchments listed in Appendix A.

Base on the previous discussion, a simple catchment scale water balance model is proposed. It is assumed that annual evapotranspiration from a catchment is the sum of the annual evapotranspiration from herbaceous vegetation (including soil evaporation) and that from forest weighted linearly according to their areas (Eagleson, 1982). The general equation can be expressed as

$$ET = f ET_f + (1 - f)ET_h \tag{11}$$

where ET is the total annual evapotranspiration in mm, f is the forest cover,  $ET_f$  is the annual evapotranspiration from forests in mm; and  $ET_h$  is the annual evapotranspiration from herbaceous plants in mm.

Holmes and Sinclair (1986) studied 103 catchments within Victoria, Australia, with varying mixture of grass and native eucalypt forest cover. They found that there were clear differences between evapotranspiration rates for forested and grassland catchments along a rainfall gradient. Turner (1991) reported similar relationships based on a study of 68 catchments in California, U. S. A. These relationships suggest that mean annual evapotranspiration rates are greater for forested than for non-forested catchments and there is a strong relationship between evapotranspiration and rainfall.

As demonstrated earlier, Eq. (10) is a useful framework for estimating annual evapotranspiration. It requires estimates of potential evaporation  $(E_o)$  and plant available water coefficient (w) for each catchment. Inspired by the work of Holmes and Sinclair (1986), and Turner (1991), we developed parameters for Eq. (10) for forested and cleared catchments, so that average evapotranspiration could be estimated from average annual rainfall. We replaced  $E_o$  in Eq. (10) with a constant  $(E_z)$ , which was obtained by a least-squares fit based on the data listed in Appendix A. Figure 8a shows the fitted function for trees, which has r<sup>2</sup> 0.93, RMSE 93 mm,  $E_{7}$  1410 mm and w of 2.0. Figure 8b shows the fitted function for herbaceous plants, which has  $r^2 0.90$ , RMSE 75 mm,  $E_7$  1100 mm and w of 0.5. Using fixed parameters rather than allowing them to vary by catchment greatly reduces the data requirements and facilitates automated implementation of the model within GIS and other model frameworks (e.g. Zhang et al 1997, Vertessy and Bessard, 1999). The simplified form of Eq. (11) can be expressed as:

$$ET = \left[ f \frac{1 + 2 \times \frac{1410}{P}}{1 + 2 \times \frac{1410}{P} + \frac{P}{1410}} + (1 - f) \frac{1 + 0.5 \times \frac{1100}{P}}{1 + 0.5 \times \frac{1100}{P} + \frac{P}{1100}} \right] F$$
(12)

17



Figure. 8: Scatter plots of the least-squares fit for (a) forested and (b) grassed catchments.

A comparison of our simplified Eq. (10) with the curves described by Holmes and Sinclair (1986) and Turner (1991) is shown in *Fig. 9*. Over the range 500 to 1500 mm of annual rainfall, these curves are all very similar. As stated earlier, the data listed in *Appendix A* represent varying mixtures of grass and forest cover. A scatter plot of these data with the simplified Eq. (10) is shown in *Fig. 10*. It is clear that most of the forested catchments plotted around the upper curve and grassed catchments around the lower curve with mixed vegetation catchments in the middle.



*Figure. 9:* Comparison of simplified Eq. (10) with the empirical relationships developed by Holmes and Sinclair (1986), Turner (1991) for forested and grassed catchments.



Fig. 10. Relationship between annual evapotranspiration and rainfall for different vegetation types

## 4 Discussion

Evapotranspiration is a complex process and is closely associated with characteristics of vegetation. It has been shown that evapotranspiration is affected by interception of rainfall and energy, advection, turbulent transport, canopy resistance, leaf area, and plant available water capacity. This list is not complete and within a catchment, the spatial distribution of these factors and topographic effects such as slope and aspect, will affect total evapotranspiration. It is fair to say that we have a good understanding of individual processes and factors involved in catchment-scale evapotranspiration. Under very dry conditions, evapotranspiration is controlled by available water (i.e. rainfall and plant available water), while under wet conditions it is controlled mainly by available energy (i.e. net radiation and advection). In most cases, actual evapotranspiration occurs between these two limits, and the relative importance of the factors varies depending on the specific climate, soil, and vegetation conditions.

Rainfall interception varies considerably between species and on average forests intercept more rainfall than grass and crops. The difference in rainfall interception between forests and short grass has important implications for catchment water balance because most of the intercepted rainfall is evaporated directly into the atmosphere. Turbulent transport above forest canopies is very efficient and the wet canopy evaporation rate may be several times higher than dry canopy transpiration rate (Monteith, 1965; Rutter, 1967; Stewart, 1977). The energy used can exceed net radiation and this additional energy is introduced by advection. Forests are generally very closely coupled to the atmosphere, and the evapotranspiration rate is dominated by turbulent transport, whereas short grass and crops are poorly coupled to the atmosphere and the evapotranspiration is controlled by net radiation. For short grass and crops, wet canopy evaporation exceeds dry canopy transpiration by only a small amount (McMillan and Burgy, 1960; McIlroy and Angus, 1964; McNaughton and Jarvis, 1983).

Plant available water capacity may have a significant impact on evapotranspiration under dry conditions. Trees generally have much larger available water capacity than herbaceous plants. As a result, trees are able to maintain relatively constant evapotranspiration rate over time, even when soil moisture in the upper part of the soil is limited. Under such conditions, shallow-rooted plants tend to close their stomata and show reduced evapotranspiration rate. In regions with dry climates, plant available water capacity is expected to be a main reason for differences in annual evapotranspiration between trees and shallow-rooted plants. Calder (1998) showed that evapotranspiration in semi-arid areas is limited principally by plant available water, whereas in the wet uplands of the UK, evapotranspiration is limited principally by radiation and advection.

Many models that incorporate all these factors and the detailed processes and feedbacks have been developed, e.g. WAVES (Dawes and Short, 1993; Zhang et al., 1996), SCAM (Raupach, 1997), SiB (Sellers et al., 1986). These model are useful in exploring sensitivity of the system. However, they may have little practical value for catchment studies because the interactions and feedbacks between processes are not yet fully understood, and the data required to calibrate and run them are not available. An alternative is to use the "top-down" approach to establish long-term equilibrium relationships for catchment water balance and this can be regarded as a preliminary step to simulating the dynamic relationships of the water balance. The advantage of this approach is that it is practical, robust and much less data intensive than a fully deterministic modelling approach.

In spite of the complexity in the soil-vegetationatmosphere system, the most important factors controlling mean annual evapotranspiration appear to be annual rainfall and vegetation type. A number of studies have shown that mean annual evapotranspiration is strongly correlated with mean annual rainfall, proposing theoretical and empirical functions that predict the proportion of rainfall that is evaporated (Schreiber, 1904; Pike, 1964; Budyko, 1974). Holmes and Sinclair (1986) and Turner (1991) each differentiated between trees and grass as the major vegetation cover within a catchment. A simple model framework has been proposed for estimating mean annual evapotranspiration based on rainfall, potential evaporation, and a plant available water coefficient (Eq. 10). Further a simplified version for direct application has been developed where only annual rainfall and two vegetation-based constants are required (Eq. 12). The model describes long-term average behaviour of catchment water balance, and it is not designed for exploring inter- or intra-annual variability. Milly (1994) showed that the spatial distribution of soil water storage capacity and temporal rainfall pattern can affect catchment evapotranspiration, but over a wide range of climatic zones this is a second order effect.

The proposed model showed good agreement with the empirical relationships developed by Schreiber (1904), Pike (1964), and Budyko (1974). The model also compared well with observations for over 250 catchments worldwide, with different climates. The mean absolute error (MAD) in the ratio of evapotranspiration to rainfall between the model and field data was 6 %, and the root mean squared error (RMSE) was 8 %. The mean absolute error (MAE) between modelled and measured evapotranspiration was 27 mm or 4.0 %, the least-squares line through the origin had a slope of 1.04 and a correlation coefficient of 0.92. It is clear from Fig. 6 that a single curve can not explain all the variability among the data. The uncertainties associated with rainfall and potential evapotranspiration estimates must contribute to the scatter.

For the simplified version, both the rainfall scalar and plant available water coefficient were set to constant values for each vegetation type. Theoretically, wshould be estimated from rooting depth and soil water holding properties, however these values were obtained by inspection of the data and an understanding of the relativity between vegetation types.  $E_z$  was obtained by a least-squares fit to the actual data with the chosen w. For forest catchments,  $E_z = 1410$  mm and w = 2.0, and for grassed catchments  $E_z = 1100$  mm and w = 0.5. It should be noted that the use of a constant  $E_z$  in Eq. (12) is to simplify the model, and it cannot be interpreted as potential evaporation in the traditional sense. For a given amount of annual rainfall, total evapotranspiration from forested catchments is greater than for non-forested catchments. The difference is larger in high rainfall areas and it diminishes in areas with annual rainfall less than 500 mm. This implies that tree plantations in low rainfall areas are not likely to alter the water balance very much and hence control the amount of non-transpired water (i.e the difference between rainfall and evapotranspiration). It should also be noted that the relative errors associated with these relationships are larger in low rainfall areas. Petheram et al (1999) investigated the relationship between non-transpired water and recharge in environments suffering dryland salinity, and introduced a factor for soil texture to partition non-transpired water into runoff and recharge.

From Fig. 10 it is clear that catchments with mixed cover have annual evapotranspiration between that observed for fully forested and fully cleared catchments, therefore we can use the two curves as an envelope. It can be assumed that mean annual evapotranspiration is a linear function of tree cover (Vertessy and Bessard, 1999) and this may introduce errors in catchments with mixed cover type in high rainfall zones. Sahin and Hall (1996) showed that the effect of tree cover is likely to be a non-linear function and there exists thresholds below which no changes in evapotranspiration could be observed (Turner, 1991). Eq. (12) provides a catchment approach for estimating the order of magnitude of the changes in mean annual evapotranspiration that result from changes in catchment vegetation, although any function of forested area can replace the factor f. The advantage of this model is its simplicity and it requires only mean annual rainfall and fraction of forest cover, and can be used to evaluate the impact of vegetation changes on catchment water balance.

# 5 Conclusions

Annual evapotranspiration is generally greater for forested than for non-forested catchments and tree plantations will increase catchment evapotranspiration compared with pastures or crops. This has implications for catchment water balance in terms of multiple-purpose land use management and rehabilitation strategies. The amount of annual evapotranspiration in a catchment is determined by the interaction of supply of water (total rainfall) and atmospheric demand (potential evapotranspiration), balanced by plants. From both a theoretical and empirical viewpoint, the most important factors in determining annual evapotranspiration are the amount of annual rainfall, potential evapotranspiration, and the plant available water capacity. As a corollary, a model can be developed to estimate mean annual evapotranspiration with only two parameters. Since this is based on, and constrained by, observations, we expect the relationship to be both robust and scientifically justifiable. The model has advantages over more traditional process-based models, requiring little data and being very easy to apply to either an individual catchment or in a spatial modelling framework. The model developed is consistent with previous theoretical work and showed good agreement with over 250 catchment-scale measurements from around the world. This model is a practical tool that can be readily used to predict the consequences of reforestation, and has potential uses in many catchment-scale vegetation management studies.

# 6 Bibliography

Acevedo, D., Sarmiento, G., and Gallardo, J.F., 1993. Comparison of the water balance in the soil-plant system between a maize field and permanent pasture on a tropical Alfisol. El estudio del suelo y de su degradaction en relacion con la desertification. Actas del 12 Congreso Latinoamericano de la Ciencia del Suelo, Salamanca, Sevilla (Espana) 19 a 26 de Septiember de 1993.

Aussenac, G., and Boulangeat, C., 1980. Rainfall interception and actual evapotranspiration in broadleaved (Fagus sylvatica) and coniferous (Pseudotsuga mensiesii) stands. Annales des Sciences Forestieres. 37, 91-107.

Bailly, C., Bennoit de Coignce, G., Malvos, C., Ningre, J.M., and Sarrailh, J.M., 1974. Étude de l'influence du couvert naturel et de ses modifications à Madagascar. Cah. Sci. Publ. Cent. Tech. For. Trop., No. 4, pp.14.

Batini, F.E., Black, R.E., Byrne, J., and Clifford, P.J., 1980. An examination of the effects of changes in catchment conditions on water yield in the Wungong catchment, Western Australia. Aust. For. Res., 10, 29-38.

Bosch, J.M., and Hewlett, J.D., 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol., 55, 3-23.

Brown, H.E., 1971. Evaluating watershed management alternatives. Proc. Am. Soc. Civ. Eng., J. Irrig. Drain. Div., 97(IR1), 93-108

Bruijnzeel, L.A., 1990. Hydrology of moist tropical forests and effects of conversion: A state of knowledge review. UNESCO, International Hydrological Programme, Paris.

Brutsaert, W.F., 1982. Evaporation into the Atmosphere, D. Reidel Publishing Company, Dordrech, Holland, 299 pp.

Budyko, M.I., 1974. Climate and Life, 508 pp., Academic, San Diego, Clif.

Calder, I.R., 1982. Forest evaporation. Proc. Can. Hydrol. Symp. 1982. Natl. Res. Counc. Can. Ottawa, Ont., pp, 173-194.

Calder, I.R., 1996. Water use by forest at the plot and catchment scale. Commonwealth Forestry Review, 75, 19-30.

Calder, I.R., 1998. Water-Resource and Land-Use Issues, SWIM Paper 3, International Water Management Institute, Colombo, Sri Lanka.

Calder, I.R., Wright, I.R., and Murdiyarso, D., 1986. A study of evaporation from tropical rainforest – west Java. J. Hydrol., 89, 13-31.

Canadell, J., Jackson, R.B., Ehleringer, J.R., Mooney, H.A., Sala, O.E., and Schulze, E.D., 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia, 108, 583-595.

Clary, W.P., Baker, Jr., M.B., O'Connell, P.F., Johnsen, Jr., T.N., and Campbell, R.E., 1974. Effects of pinyon – juniper removal on natural resource products and uses in Arizona. U.S. Dep. Agric. For. Serv., Gen. Tech. Rep. RM-128, pp28.

Cornish, P.M., 1993. The effects of logging and forest regeneration on water yield in a moist eucalypt forest in New South Wales, Australia. J. Hydrol., 150, 301-322.

Couturier, D.E., and Ripley, E.A., 1973. Rainfall interception in mixed grass prairie. Can. J. Plant Sci. 53, 659-663.

CSIRO, 1999. Salt: Australia's greatest battle. CSIRO Media Release, Ref 99/33, 15 February, 1999.

Dabral, B.G., and Subba Rao, B.K., 1968. Interception studies in chir and teak plantations – New Forest. Indian For. 94, 541-551.

Dawes, W.R., Short, D.L., 1993. The efficient numerical solution of differential equations for coupled water and solute dynamics: The WAVES model. CSIRO Division of Water Resources, Technical Memorandum, 93/18.

Delfs, J., Friedrich, W., Kiesekamp, H., and Wagenhoff, A., 1958. Der Einfluss des Wales und Kahlschlages auf den Abflussvorgang, den Wasserhaushalt unde den Bodenabtrag aus dem Walde, Part 3. Hannover, pp.223.

Dingman, S.L., Physical Hydrology, Macmillan Publishing Company, New York.

Dunin, F.X., 1965. The effect of vegetation changes on parameters for estimating runoff near Bacchus Marsh. Civ. Eng. Trans., Inst. Engrs., Australia, CE 7(1), 16-22.

Dunin, F.X. and MacKay, S.M., 1982. Evaporation of eucalypt and coniferous forest communities. First National Symposium on Forest Hydrology, Melb., 18-25. Dye, P.J., 1996. Climate, forest and streamflow relationships in South African afforested catchments. Commonwealth Forestry review, 75, 31-38.

Eagleson, P.S., 1982. Ecological optimality in waterlimited natural soil-vegetation systems. 1. Theory and hypothesis. Water Resour. Res., 18, 325-340.

Farquharson, F.A.K., Plinston, D.T., and Sutcliffe, J.V., 1996. Rainfall and runoff in Yemen. Hydro. Sci. J., 41, 797-811.

Feller, M.C., 1981. Water balances in Eucalyptus regans, E. Obliqua and Pinus radiata forest in Victoria. Aust. For., 44, 153-166.

Gash, J.H.C., 1979. An analytical model of rainfall interception by forests. Q. J. R. M. Soc., 105, 43-55.

Gates, D.M., 1980. Biophysical Ecology, Springer-Verlag, New York.

Greacen, E.L., and Williams, J. 1983. Physical properties and water relations, In: Soil – an Australian viewpoint. CSIRO/Academic Press, pp.499-530.

Greenwood, E.A.N., Beresford, J.D., Bartle, J.R. and Barron, R.J.W., 1982. Evaporation from vegetation in landscapes developing secondary salinity using the ventilated-chamber technique. IV. Evaporation from a regenerating forest of Eucalyptus wandoo on land formerly cleared for agriculture. J. Hydrol., 58: 357-366.

Harr, R.D., 1976. Forest practices and streamflow in western Orgeon. U.S. Dep. Agric., For. Serv. Gen. Tech. Rep. PNW-49, pp.18.

Harrold, L.L., Brakensiek, D.L., McGuninness, J.L., Amerman, C.R., and Dreibelbis, F.R., 1962. Influence of land use and treatment on the hydrology of small watersheds at Coshocton, Ohio, 1939-1957. U.S. Dep. Agric. Tech. Bull 1256, pp.194.

Helvey, J.D., 1973. Watershed behaviour after forest fire in Washington. Proc. Irrig. Drain, Div. Spec. Conf., Fort Collines, Colo., pp, 402-422.

Helvey, J.D., 1980. Effect of a north-central Washington wild-fire on runoff and sediment production. Water Resour. Bull., 16(4), 625-634.

Hermann, R., 1970. Vertically differentiated water balance in tropical high mountains – with special reference to the Sierra Nevada de Sa. Marta, Colombia. International Association of Hydrological Sciences Publication 93, 262-273. Heth, D., and Karschon, R., 1963. Interception of rainfall by Eucalyptus camaldulensis Dehn. Contrib. Eucalypts Isr., 2, 7-12.

Hewlett, J.D., and Hibbert, A.R., 1961. Increases in water yield after several types of forest cutting. Int. Assoc. Sci. Hydrol. Pub. No. 6, 5-17.

Hibbert, A.R., 1967. Forest treatment effects on water yield. In "Forest Hydrology" (W.E. Sopper and H.W. Lull, eds.), Pergamon, Oxford, 813 pp.

Hibbert, A. R., 1971. Increases in streamflow after converting chaparral to grass. Water Resour. Res., 7, 71-80.

Hibbert, A.R., 1979. Managing vegetation to increase flow in the Colorado River basin. U.S. Dep. Agric. For. Serv., Gen. Tech. Rep. RM-66, pp27.

Hodnett, M.G., Pimentel da Silva, L., da Rocha, H.R., and Cruz Senna., R., 1995. Seasonal soil water storage changes beneath central Amazonian rainforest and pasture. J. Hydrol., 170, 233-254.

Holmes, J.W., and Sinclair, J.A., 1986. Water yield from some afforested catchments in Victoria. Hydrology and Water Resources Symposium, Griffith University, Brisbane, 25-27 November 1986. The Institution of Engineers, Australia.

Holscher, D., Sa, T.D., de A., Bostor, T.X., Denich, M., and Folster, H., 1997. Evaporation from secondary vegetation in eastern Amazonia. J. Hydrol., 193, 293-305.

Hoover, M.D., 1944. Effects of removal of forest vegetation upon water yields. Trans. Amer. Geoph. U., 25, 969-975.

Hornbeck, J.W., Pierce, R.S., and Federer, C.A., 1970. Streamflow changes after forest clearing in New England. Water Resour. Res., 6, 1124-1132.

Horton, R.E., 1919. Rainfall interception. Mon. Weather Rev., 47, 603-623.

Hoyt, W.G., and Troxell, H.C., 1934. Forest and streamflow. Trans. Amer. Soc. Civil Eng. 99, 1-111.

Huttle, Ch., 1975. Researches sur l¢écosystème de la forêst subéquatoriale de basse Côte d' Ivoire. IV Estimation du bian hydrique. La Terre et la Vie. 29, 192-202.

Institute of Hydrology, 1994. Amazonia: Forest, pasture and climate – results from ABRACOS. Wallingford, UK.

Jarvis, P.G., and McNaughton, K.G., 1986. Stomatal control of transpiration: scaling up from leaf to region. Adv. Ecol. Res., 15, 1-49.

Jarvis, P.G., and Stewart, J., 1979. Evaporation of water from plantation forest. In "The Ecology of Even-aged Forest Plantation" (E.D. Ford et al., ed.), pp.327-349. Inst. Terrestrial Ecology, Cambridge.

Johansen, R.W., 1964. Effect of overstory on ground distribution of air-dropped slurries. Fire Control Notes., 25, 3-4.

Johnson, E.A., and Kovner, J.L., 1956. Effect on streamflow of cutting a forest understory. For. Sci., 2, 82-91.

Jolly, I.D., Dowling, T.I., Zhang, L., Williamson, D.R., and Walker, G.R., 1997. Water and salt balances of the catchments of the Murray-Darling Basin. CSIRO Land and Water Technical Report 37/97.

Kaufman, M.R., 1979. Stomatal control and the development of water deficit in Engleman spruce seedlings during drought. Can. J. For., 9, 297-304.

Kim, K.H., and Woo, B.M., 1988. Study on rainfall interception loss from canopy in forest (I). J. Korean For. Soc. 77, 331-337.

Kittredge, J., Loughead, H.J., and Mazurak, A., 1941. Interception and stemflow in a pine plantation. J. Forestry, 39, 505-522.

Langford, K.J., 1976. Change in yield of water following a bushfire in a forest of Eucapultus regnans. J. Hydrol., 29, 87-114.

Langford, K.J., and O'Shaughnessy, P.J., 1978. A study of canopy interception in native forests and conifer plantations. Melbourne and Metropolitan Board of Works, Report. No., MMBW-W-0007, pp. 88.

Lee, R., 1980, Forest Hydrology, New York, Columbia University Press.

Lettau, H.H., and Hopkings, E.J., 1991. Evapoclimatonomy III: The reconciliation of monthly runoff and evaporation in the climatic balance of evaporable water on land areas. J. Applied. Metorol., 30, 776-792.

Leuning, R., Condon, A.G., Dunin, F.X., Zegelin, S., and Denmead, O.T., 1994. Rainfall interception and evaporation from soil below a wheat canopy. Agric. For. Met., 67, 221-238. Lewis, D.C., 1968. Annual hydrologic response to watershed conversion from oak woodlands to annual grassland. Water Resour. Res., 4, 59-72.

Lloyd, C.R., Gash, J.H.C., Shuttleworth, W.J., and Marques Filho Ade O., 1988. The measurement and modelling of rainfall interception by Amazonian rain rorest. Agric. For. Met. 43, 277-294.

Lørup J.K., Refsgaard, J.C., and Mazvimavi, D., 1998. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling: Case studies from Zimbabwe. J. Hydrol., 205, 147-163.

McGowan, W., Williams, J.B., and Monteith, J.L., 1980. The water balance of an agricultural catchment III. The water balance. J. Soil. Sciences, 31,245-262.

McIlroy, I.C., and Angus, D.E., 1964. Grass, water, and soil evaporation at Aspendle. Agric. Meteorol., 1, 201-224.

McMillan, W.D., and Burgy, R.H., 1960. Interception loss from grass. J. Geophys. Res., 65, 2389-2394.

McNaughton, K.G., and Black, T.A., 1973. A study of evapotranspiration from a Douglas fir forest using the energy balance approach. Water Resour. Res., 9, 1579-1590.

McNaughton, K.G., and Jarvis, P.G., 1983., Predicting the effects of vegetation changes on transpiration and evaporation. In "Water Deficits and Plant Growth" (T.T. Kozowski, Ed.). Vol. VII. Academic Press, New York, pp. 1-47.

Milly, P.C.D., 1994. Climate, soil water storage, and the average annual water balance. Water Resour. Res., 30, 2143-2156.

Monteith, J.L., 1965. Evaporation and the environment. Sym. Soc. Exp. Biol., 19, 205-234.

Monteith, J.L., and Unsworth, M.H., 1990. Principles of Environmental Physics. 2nd. edn. Routledge, Chapman and Hall, New York, 291.pp.

Moor, C.J., 1976. A comparative study of radiation balance above forest and grassland. Q.J. R. Meteorol., Soc., 102, 889-899.

Morton, F.I., 1971. Catchment evaporation and potential evaporation – further development of a climatologic relationship, J. Hydrol., 12, 81-99.

Morton, F.I., 1983. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol., 66, 1-76.

Morton, F.I., 1994. Evaporation research – A critical review and its lessons for the environmental sciences. Critical Reviews in Environmental Science and Technology, 24, 237-280.

Moul, E.T., and Buell, M.F., 1955. Moss cover and rainfall interception in frequently burned sites in the New Jersey pine barrens. Bul. Torrey Botan. Club. 82, 155-162.

Nakano, H., 1967. Effects of changes of forest conditions on water yield, peak flow and direct runoff of small watersheds in Japan. In "Forest Hydrology" (W.E. Sopper and H.W. Lull, eds.), Pergamon, Oxford, 813 pp.

Nänni, U.W., 1970. The effect of afforestation on streamflow at Cathedral Peak. Report No. 1. S. Afr. For. J., 74, 6-12.

Nesptad, D.C., de Carvalho, C.R., Davidson, E.A., Jipp, P.H., Lefebvre, P.A., Negreiros, G.H., de Silva, E.D., Stone, T.A., Trumbore, S.E., Vieira, S., 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forest and pasture. Nature, 372, 666-669.

Ni-Lar-Win, 1994, Contributions to rainfall-runoff modelling of basin scale. Ph.D. Thesis, VUB-Hydrologie No. 28, Vrije Universiteit Brussel, Brussels, Belgium.

Noilhan, J., André, J.C., Bougeault, P., Goutorbe, J.P., and Lacarrere, P., 1991. Some aspects of the HAPEX-MOBILHY programme: The data base and the modelling strategy. Survey in Geophysics, 12, 31-61.

Passioura, J.B., and Stirzaker, R.J., 1993. Feedforward responses of plants to physical inhospitable soil. International Crop Science I, 715-719.

Pearce, A.J., O'Loughlin, C.L., and Row, L.K., 1976. Hydrologic regime of small undisturbed beech forest catchments, north Westland. N.Z. Dep. Sci. Ind. Res., Info. Ser. No. 126, 150-158.

Pereira, H.C., 1952. Interception of rainfall by Cypress plantations. E. Afr. Agric. J., 18, 73-76.

Pereira, H.C., 1964. Research into the effects of land use on stream. Trans. Rhod. Sci. Assoc. Proc., 1, 119-124.

Petheram, C., Zhang, L., and Walker, G.R., 1999. Towards a predictive framework for landuse impacts on recharge: A review of recharge studies in Australia. In: Integrated Perspectives (Department of Natural Resources), Griffith, NSW, Australia. Pike, J.G., 1964. The estimation of annual runoff from meteorological data in tropical climate. J. Hydrol., 2, 116-123.

Piñol, J., Lledó, M.J., and Escarré, A., 1991. Hydrological balance of two Mediterranean forested catchemnts (Prades, northeast Spain). Hydrol. Sci. J., 36, 95-107.

Pook, E.W., Moore, P.H.R., and Hall, T., 1991. Rainfall interception by trees of Pinus radiata and Eucalyptus vimnialis in a 1300 mm rainfall area of southeastern New South Wales: I. Gross losses and their variability. Hydrological Processes, 5(2), 127-141.

Pressland, A.J., 1973. Rainfall partitioning by an arid woodland (Acacia aneura, F. Muell.) in south-western Queensland. Aust. J. Bot., 21, 235-245.

Priestly, C.H.B., Taylor, R.J., 1972. On the assessment of the surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev., 100, 81-92.

Raupach, M.R., Finkele, K., Zhang, L., 1997. SCAM (Soil-Canopy-Atmosphere Model): Description and comparisons with field data, CSIRO CEM Tech. Report, No. 132, 81pp.

Ray, M.P., 1970. Preliminary observations on stemflow, etc., in Alstonia scholaris and shorea robusta plantations at Arabari, West Bengal. Indian For., 96, 482-493.

Rich, L.R., 1968. Preliminary water yields after timber harvest on Castle Creek, Arizona watersheds. Ariz. Watershed Symp. Proc., 12, 9-12.

Rich, L.R., Reynolds, H.G., and West, J.A., 1961. The workman Creek experimental watershed. U.S. Dep. Agric., For. Serv., Res. Pap. RM-65, pp.18.

Ritchie, J.T., and Burnett, E., 1971. Dryland evaporative flux in a subhumid climate: I. Micrometeorological influences. Agron. J. 63:51-55.

Rothacher, J., 1970. Increases in water yield following clear-cut logging in the Pacific Northwest. Water Resour. Res., 6, 653-658.

Rowe, L.K., 1975. Rainfall interception by mountain beech. New Zealand. J. For. Sci. 5, 45-61.

Rowe, P.B., 1963. Streamflow increases after removing woodland riparian vegetation from a southern California watershed. J. For., 61, 365-370.

Rowntree, P.R., 1988. Review of general circulation models as a basis for predicting the effects of

vegetation changes on climate. In Forests, Climate and Hydrology: Regional impacts (E.R.C. Reynolds and F.B. Thompson, eds.), pp.162-192. Kefford Press, UK.

Rutter, A.J., 1967. An analysis of evaporation from a stand of Scots Pine. In "Forest Hydrology" (W.E. Sopper and H.W. Lull, eds.), Pergamon, Oxford, 813 pp.

Sahin, V., and Hall, M.J., 1996. The effects of afforestation and deforestation on water yields. J. Hydrol., 178, 293-309.

Schmidt, K., and Mueller, K., 1991. Results concerning rainfall interception in agricultural plant stands. Zeitschrift fur Planzenernahrung und Bodenkunde, 154, 153-156.

Schreiber, P., 1904. Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüße in Mitteleuropa, Z. Meteorol., 21, Pt. 10.

Schultze, E.D., and Kuppers, M., 1979. Short-term and long-term effects of plant water deficit and stomatal response to humidity in Coryplus Avellana L, Planta, 146, 319-326.

Scott, D.F., and Lesch, W., 1997. Streamflow responses to afforestion with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, South Africa. J. Hydrol., 199, 360-377.

Sellers, P.J., Mintz, Y., Sud, Y.C., Dalcher, A., 1986. The design of a simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43(6), 505-531.

Sharda, V.N., Samraj, P., Samra, J.S., and Lakshmanan, V., 1998. Hydrological behaviour of first generation coppiced bluegum plantations in the Nigiri sub-watersheds. J. Hydrol, 211, 50-60.

Shuttleworth, W.J. 1988. Evaporation from Amazonan rain forest. Philosophical Transcations of the Royal Society (London), Series B, 233, 321-346.

Silberstein, R.P., Sivapalan, M., and Wyllie, A., 1999. On the validation of a coupled water and energy balance model at small catchment scales, J. Hydrol, 220, 149-168.

Singh, R.P., and Gupta, M.K., 1987. Rainfall interception by pinus wallichiana plantation in temperature region of Himachal Pradesh, India. Indian Forester, 113, 559-566. Singh, V.P., 1988. Hydrologic Systems, Vol. II, Watershed Modelling, Prentice Hall, Englewood Cliffs, New Jersey.

Smith, M.K., 1974, throughfall stemflow and interception in pine and eucalypt forest. Aust. For. 36, 190-197.

Solins, P., and Drewry, G., 1970. Electrical conductivity and flow rate of water through the forest canopy. In A Tropical Rain Forest (Odum and Pigeon, eds.), U.S. At. Energy Comm., Washington, D.C.

Stewart, J.B., 1977. Evaporation from the wet canopy of a pine forest. Water Resour. Res., 13, 915-921.

Sutcliffe, J.V., Agrawal, R.P., and Tucker, J. M., 1981. The water balance of the Betwa basin, India. Hydrol. Sci. Bull., 26, 149-1158.

Swank, W.T., and Miner, N.H., 1968. Conversion of hardwood-covered watersheds to white pine reduces water yield. Water Resour. Res., 4, 947-954.

Swift, Jr., L.W., and Swank, W.T., 1980. Long term responses of streamflow following clearcutting and regrowth. Pap. Presented at Symp. On Influence of Man on the Hydrological Regime, Helsinki, June 23-26, 1980.

T.V.A. (Tennessee Valley Authority), 1961. Forest cover improvement influences upon hydrologic characteristics of White Hollow watershed 1935-58. Tenn. Valley Auth., Cookeville, Tenn., Div. Water Control Plann., Hydraul. Data Br., pp. 104.

Tan, C.S., and Black, T.A., 1976. Factors affecting the canopy resistance of a Douglas-fir forest. Bound. Layer Meteorol., 10, 475-488.

Tennant, D., 1976. Wheat crop penetration and total available water on a range of soil types. Aust. J. Exp. Agric. Anim. Husb., 16, 570-577.

Thurow, T.L, Blackburn, W.H., Warren, S.D., and Taylor, C.A. Jr., 1987. Rainfall interception by midgrass, shortgrass, and live oak mottes. J. Range Man., 40, 455-460.

Tromble, J.M., 1988. Water interception by two arid land shrubs. J. Arid Env. 15, 65-70.

Tunstall, B.R., 1973. Water relations of a Brigalow community. Ph.D. Thesis, University of Queensland, Brisbane.

Turner, K.M., 1991. Annual evapotranspiration of native vegetation in a Mediterranean-type climate. Water Resour. Bull., 27, 1-6.

Veneklass, E.J., Rvan, E.K., and Van EK, R., 1990. Rainfall interception in two tropical montane rain forests, Colombia. Hydrological Processes, 4(4), 311-326.

Vertessy, R.A., and Bessard, Y., 1999. Anticipating the negative hydrologic effects of plantation expansion: Results from a GIS-based analysis on the Murrumbidgee Basin. Cooperative Research Centre for Catchment Hydrology, Report 99/6, Canberra.

Walker, G.R. Jolly, I.D., Williamson, D.R., Gilfedder, M., Morton, R., Zhang, L., Dowling, T., Dyce, P., Nathan, R., Nadakumar, N., Gates, G.W.B, Linke, G.K., Seker, M.P., Robinson, G., Jones, H., Clarke, R., McNeill, V., and Evans, W.R., 1998. Historical stream salinity trends and catchment salt balances in the Murray-Darling Basin. CSIRO Land and Water Technical Report, 33/98.

Webb, E.K., 1975. Evaporation from catchments. In "Prediction in Catchment Hydrology" (T.G. Chapman and F.X. Dunin, eds.), pp.203-236. Aust. Academy of Sci. Canberra.

Wells, L.P., and Blake, G.J., 1972. Interception characteristics of some central North Island vegetation and their geographical significance. Proc. 7th N.Z. Geography Conference, Hamilton.

Wollny, E., 1890. Untersuchungen über die Beeinflussung der Fruchtbakeit der Ackerkrume durch die Thätigkeit der Regenwürmer. Forsch. Geb. Agric. Phys. 13, 381-395.

Wullschleger, S.D., Meinzer, F.C., and Vertessy, R.A., 1998. A review of whole-plant water use studies in trees. Tree Physiology, 18, 499,-512.

Xu. C.Y., 1992. Monthly water balance models in different climatic regions. Ph.D. Thesis, VUB-Hydrologie No. 22, Vrije Universiteit Brussel, Brusssels, Belgium.

Xue, Y., 1997. Biosphere feedback on regional climate in tropical north Africa. Q. J. R. M. Soc., 123, 1483-1515.

Yadav, A.K., and Mishra, G.P., 1985. Distribution of precipitation under a tropical dry deciduous forest stand of central India. J. Trop. For. 1, 182-197

Zhang, L., and Dawes, W.R., 1995. Influence of atmospheric stability upon evapotranspiration estimates – tests using HAPEX-MOBILHY data and the WAVES model. CSIRO, Division of Water Resources Technical Memorandum 95/1, Canberra.

Zhang, L., Dawes, W.R., Hatton, T.J., 1996. Modelling hydrologic processes using a biophysically based model – Application of WAVES to FIFE and HAPEX-MOBILHY. J. Hydrol., 185, 330-352.

Zhang, L., Stauffacher, M., Walker, G.R., and Dyce, P.A., 1997. Recharge estimation in the Liverpool Plains (NSW) for input to groundwater models. CSIRO Land and Water Technical Report 10/97, Canberra.

# Appendix A: A summary of worldwide catchment water balance studies. Annual rainfall (P), runoff (Q), and evapotranspiration (ET) are average values.

| Catchment                          | Area (km <sup>2</sup> ) | Vegetation cover                     | Years                  | Р             | Q             | ЕТ         | References                               |
|------------------------------------|-------------------------|--------------------------------------|------------------------|---------------|---------------|------------|------------------------------------------|
|                                    |                         |                                      |                        | ( <b>mm</b> ) | ( <b>mm</b> ) | (mm)       |                                          |
| Australia                          |                         |                                      |                        |               |               |            |                                          |
| Adelong Creek                      | 155                     | Mixed vegetation                     | 1985-1994              | 913           | 264           | 649        | Jolly et al (1997)                       |
| Adjungbilly Creek                  | 411                     | Mixed vegetation                     | 1985-1994              | 959           | 96            | 863        | Jolly et al (1997)                       |
| Avoca                              | 4740                    | Mixed vegetation                     | 1985-1994              | 380           | 11            | 369        | Jolly et al (1997)                       |
| Axe Creek                          | 325                     | Mixed vegetation                     | 1985-1994              | 593           | 48            | 545        | Jolly et al (1997)                       |
| Axe Creek 33                       | 100                     | Pasture, crops                       | 1990-1994              | 588           | 62            | 526        | Jolly et al (1997)                       |
| Barwon                             | 132200                  | Pasture, crops                       | 1985-1994              | 598           | 9             | 589        | Jolly et al (1997)                       |
| Bet Bet Creek                      | 635                     | Mixed vegetation                     | 1991-1994              | 565           | 45            | 520        | Jolly et al (1997)                       |
| Bet Bet Creek 39                   | 225                     | Pasture, crops                       | 1991-1994              | 606           | 41            | 565        | Jolly et al (1997)                       |
| Billabong Creek26                  | 3065                    | Mixed vegetation                     | 1985-1994              | 661           | 55            | 606        | Jolly et al (1997)                       |
| Billabong Creek27<br>Bogan         | 27500<br>14760          | Mixed vegetation<br>Pasture, crops   | 1985-1992<br>1985-1994 | 451<br>509    | 16<br>9       | 435<br>500 | Jolly et al (1997)<br>Jolly et al (1997) |
| Border                             | 44070                   | Pasture                              | 1985-1994              | 599           | 10            | 589        | Jolly et al (1997)                       |
| Broken                             | 24530                   | Mixed vegetation                     | 1988-1994              | 798           | 95            | 701        | Jolly et al (1997)                       |
| Bullock Creek                      | 225                     | Pasture, crops                       | 1991-1992              | 537           | 77            | 460        | Jolly et al (1997)                       |
| Campaspe31                         | 3398                    | Mixed vegetation                     | 1988-1994              | 655           | 65            | 590        | Jolly et al (1997)                       |
| Campaspe32                         | 629                     | Pasture, crops                       | 1985-1994              | 786           | 148           | 638        | Jolly et al (1997)                       |
| Castlereagh                        | 3600                    | Forests                              | 1985-1994              | 701           | 18            | 683        | Jolly et al (1997)                       |
| Castlereagh13                      | 8400                    | Pasture, crops                       | 1987-1994              | 627           | 15            | 612        | Jolly et al (1997)                       |
| Coliban                            | 225                     | Pasture, crops                       | 1985-1993              | 922           | 161           | 761        | Jolly et al (1997)                       |
| Condamine-Culgoa                   | 156575                  | Pasture, crops                       | 1985-1993              | 478           | 3             | 475        | Jolly et al (1997)                       |
| Coxes Creek                        | 4040                    | Pasture, crops                       | 1985-1989              | 682           | 16            | 666        | Jolly et al (1997)                       |
| Crabapple                          | 0.147                   | Eucalypt                             | 4 years                | 1639          | 449           | 1190       | Cornish (1993)                           |
| Creswick Creek                     | 225<br>3490             | Mixed vegetation<br>Mixed vegetation | 1985-1994<br>1985-1994 | 722<br>687    | 104<br>28     | 618<br>659 | Jolly et al (1997)<br>Jolly et al (1997) |
| Cungegong<br>Darling28             | 386000                  | Mixed vegetation                     | 1985-1994              | 524           | 28<br>6       | 518        | Jolly et al (1997)                       |
| Darling29                          | 569800                  | Pasture, crops                       | 1985-1994              | 474           | 3             | 471        | Jolly et al (1997)                       |
| Darling30                          | 647200                  | Pasture, crops                       | 1985-1994              | 474           | 2             | 472        | Jolly et al (1997)                       |
| Dumaresq                           | 8850                    | Pasture                              | 1985-1994              | 746           | 43            | 703        | Jolly et al (1997)                       |
| Goodradigbee                       | 1165                    | Forests                              | 1985-1994              | 1212          | 273           | 939        | Jolly et al (1997)                       |
| Graceburn                          | 25                      | Eucalyptus forest                    | Long term              | 1460          | 850           | 610        | Langford (1976)                          |
| Gwyder 1                           | 6389                    | Pasture                              | 1985-1994              | 753           | 56            | 697        | Jolly et al (1997)                       |
| Gwyder2                            | 12300                   | Pasture                              | 1985-1994              | 709           | 40            | 669        | Jolly et al (1997)                       |
| Joyces Creek                       | 225                     | Mixed vegetation                     | 1989-1995              | 647           | 43            | 604        | Jolly et al (1997)                       |
| Jugiong Creek                      | 2120                    | Pasture                              | 1985-1994              | 694           | 66<br>455     | 628<br>707 | Jolly et al (1997)                       |
| Kiewa<br>Lachlan15                 | 1655<br>19000           | Mixed vegetation<br>Pasture, crops   | 1985-1994<br>1985-1994 | 1162<br>717   | 455<br>79     | 707<br>638 | Jolly et al (1997)<br>Jolly et al (1997) |
| Lachlan14                          | 11100                   | Pasture, crops                       | 1985-1994              | 746           | 101           | 703        | Jolly et al (1997)                       |
| Lachlan16                          | 25200                   | Pasture, crops                       | 1985-1994              | 673           | 41            | 632        | Jolly et al (1997)                       |
| Lachlan17                          | 54100                   | Pasture, crops                       | 1985-1994              | 577           | 10            | 567        | Jolly et al (1997)                       |
| Loddon 34                          | 15400                   | Pasture, crops                       | 1985-1993              | 523           | 20            | 503        | Jolly et al (1997)                       |
| Loddon 35                          | 4178                    | Pasture, crops                       | 1985-1994              | 623           | 59            | 564        | Jolly et al (1997)                       |
| Loddon 36                          | 1750                    | Mixed vegetation                     | 1985-1994              | 669           | 76            | 593        | Jolly et al (1997)                       |
| Loddon 37                          | 1050                    | Mixed vegetation                     | 1985-1994              | 717           | 97            | 620        | Jolly et al (1997)                       |
| Loddon38                           | 5350                    | Pasture, crops                       | 1989-1995              | 591           | 48            | 508        | Jolly et al (1997)                       |
| Macintyre                          | 6740<br>4590            | Mixed vegetation                     | 1985-1994              | 732           | 36            | 696        | Jolly et al (1997)                       |
| Macquarie<br>Macquarie10           | 4580                    | Pasture, crops                       | 1985-1994              | 774<br>591    | 89<br>82      | 685<br>508 | Jolly et al (1997)                       |
| Macquarie11                        | 13980<br>19600          | Pasture, crops<br>Pasture, crops     | 1985-1994<br>1985-1994 | 721           | 83<br>79      | 508<br>642 | Jolly et al (1997)<br>Jolly et al (1997) |
| Macquarie12                        | 26570                   | Pasture, crops                       | 1985-1994              | 704           | 35            | 669        | Jolly et al (1997)                       |
| Marthaguy Creek                    | 70850                   | Pasture, crops                       | 1985-1995              | 528           | 8             | 520        | Jolly et al (1997)                       |
| McCallum Creek                     | 525                     | Pasture, crops                       | 1985-1990              | 605           | 32            | 573        | Jolly et al (1997)                       |
| Mehi                               | 12960                   | Pasture                              | 1985-1994              | 694           | 27            | 667        | Jolly et al (1997)                       |
| Mitta                              | 4716                    | Forests                              | 1985-1994              | 1128          | 249           | 879        | Jolly et al (1997)                       |
| Molongolo                          | 1957                    | Mixed vegetation                     | 1985-1994              | 730           | 108           | 622        | Jolly et al (1997)                       |
| Mooki                              | 2540                    | Pasture, crops                       | 1985-1990              | 727           | 30            | 697        | Jolly et al (1997)                       |
| Mooki5                             | 3630                    | Pasture, crops                       | 1985-1991              | 816           | 33            | 783        | Jolly et al (1997)                       |
| Moonie                             | 15810                   | Pasture, woodland                    | 1985-1990              | 533           | 7             | 526        | Jolly et al (1997)                       |
| Mountain Creek                     | 186                     | Mixed vegetation                     | 1985-1994              | 915<br>475    | 239           | 676<br>474 | Jolly et al (1997)                       |
| Mt Hope Creek                      | 1775<br>175             | Mixed vegetation                     | 1987-1990              | 475           | 1<br>84       | 474<br>567 | Jolly et al (1997)                       |
| Mt Lda Creek<br>Mt. Pleasant Creek | 175<br>250              | Mixed vegetation<br>Pasture, crops   | 1985-1994<br>1985-1993 | 651<br>573    | 84<br>43      | 567<br>530 | Jolly et al (1997)<br>Jolly et al (1997) |
| Murray                             | 230<br>27300            | Mixed vegetation                     | 1985-1995              | 1096          | 43<br>211     | 885        | Jolly et al (1997)                       |
| Murray 40                          | 86175                   | Pasture, crops                       | 1986-1994              | 698           | 81            | 617        | Jolly et al (1997)                       |
| ·· ··y ···                         |                         | ······ ,r-                           |                        |               |               |            | (1///)                                   |

### COOPERATIVE RESEARCH CENTRE FOR **CATCHMENT HYDROLOGY**

| Catchment                                | Area (km <sup>2</sup> ) | Vegetation cover                     | Years                  | P<br>(mm)  | Q<br>(mm)  | ET<br>(mm) | References                               |
|------------------------------------------|-------------------------|--------------------------------------|------------------------|------------|------------|------------|------------------------------------------|
| Murray 41                                | 251175                  | Mixed vegetation                     | 1985-1994              | 586        | 32         | 554        | Jolly et al (1997)                       |
| Murray 42                                | 898375                  | Mixed vegetation                     | 1985-1994              | 509        | 10         | 499        | Jolly et al (1997)                       |
| Murrumbidgee18                           | 3745                    | Forests                              | 1985-1994              | 788        | 87         | 701        | Jolly et al (1997)                       |
| Murrumbidgee19                           | 5140                    | Mixed vegetation                     | 1985-1994              | 788        | 82         | 686        | Jolly et al (1997)                       |
| Murrumbidgee20                           | 9221                    | Pasture, crops                       | 1985-1994              | 788        | 102        | 686        | Jolly et al (1997)                       |
| Murrumbidgee21                           | 13100                   | Forests                              | 1985-1994              | 836        | 122        | 714        | Jolly et al (1997)                       |
| Murrumbidgee22                           | 26400                   | Mixed vegetation                     | 1985-1994              | 817        | 185        | 632        | Jolly et al (1997)                       |
| Murrumbidgee23                           | 34200                   | Mixed vegetation                     | 1985-1992              | 770        | 118        | 652        | Jolly et al (1997)                       |
| Murrumbidgee24                           | 56800                   | Mixed vegetation                     | 1985-1992              | 677        | 40         | 637        | Jolly et al (1997)                       |
| Murrumbidgee25                           | 165000                  | Mixed vegetation                     | 1985-1992              | 559        | 9          | 550        | Jolly et al (1997)                       |
| Muttama Creek                            | 1025                    | Pasture, crops                       | 1985-1994              | 652        | 66         | 586        | Jolly et al (1997)                       |
| Namoi3                                   | 5180                    | Mixed vegetation                     | 1985-1988              | 772        | 40         | 618        | Jolly et al (1997)                       |
| Namoi4                                   | 5700                    | Mixed vegetation                     | 1985-1989              | 751        | 39<br>26   | 712        | Jolly et al (1997)                       |
| Namoi6                                   | 17100                   | Pasture, crops                       | 1985-1993              | 744<br>716 | 36<br>25   | 708<br>691 | Jolly et al (1997)                       |
| Namoi7                                   | 22600<br>28200          | Mixed vegetation                     | 1985-1989              | 716        | 25<br>25   | 691<br>696 | Jolly et al (1997)                       |
| Namoi8                                   | 36290                   | Forests<br>Mixed vegetation          | 1985-1993<br>1985-1993 | 721<br>679 | 25<br>13   | 696<br>666 | Jolly et al (1997)                       |
| Namoi9<br>Ovens                          | 6239                    | Mixed vegetation<br>Mixed vegetation | 1985-1995              | 1022       | 13<br>320  | 702        | Jolly et al (1997)<br>Jolly et al (1997) |
| Parwan Creek                             | 0.81                    |                                      |                        | 455        | 15         | 440        |                                          |
| Parwan Creek<br>Peel                     | 0.81<br>4670            | Pasture<br>Mixed vegetation          | 1956-1963<br>1985-1990 | 455<br>816 | 15<br>62   | 440<br>754 | Dunin (1965)<br>Jolly et al (1997)       |
| Piccaninny Creek                         | 4670<br>600             | Mixed vegetation                     | 1985-1990              | 816<br>497 | 62<br>50   | 754<br>447 | Jolly et al (1997)                       |
| Salmon                                   | 1                       | Forests                              | Long term              | 1260       | 145        | 1115       | Silbertein et al (1997)                  |
| Shoalhaven                               | 2700                    | Mixed vegetation                     | average                | 900        | 210        | 690        | Morton (1983)                            |
| Talbragar                                | 3050                    | Mixed vegetation                     | 1985-1994              | 664        | 17         | 647        | Jolly et al (1997)                       |
| Tarcutta Creek                           | 1660                    | Pasture, crops                       | 1985-1994              | 757        | 116        | 641        | Jolly et al (1997)                       |
| Tullaroop Creek                          | 550                     | Mixed vegetation                     | 1985-1994              | 707        | 87         | 620        | Jolly et al (1997)                       |
| Tumut                                    | 3300                    | Pasture, crops                       | 1985-1994              | 1180       | 412        | 768        | Jolly et al (1997)                       |
| Umurray                                  | 15300                   | Mixed vegetation                     | 1985-1994              | 1128       | 331        | 797        | Jolly et al (1997)                       |
| Wallumburrawang Creek                    | 452                     | Pasture                              | 1985-1994              | 596        | 11         | 585        | Jolly et al (1997)                       |
| Wights                                   | 1                       | Pasture                              | average                | 1260       | 503        | 757        | Silbertein et al (1999)                  |
| Wild Duck Creek                          | 200                     | Pasture, crops                       | 1985-1994              | 702        | 129        | 573        | Jolly et al (1997)                       |
| Wungong Brook                            | 146                     | Forest                               | average                | 1100       | 190        | 910        | Batini et al (1980)                      |
| Yass                                     | 1362                    | Mixed vegetation                     | 1985-1994              | 674        | 66         | 608        | Jolly et al (1997)                       |
| Belgium                                  |                         |                                      |                        |            |            |            |                                          |
| Leie                                     | 3190                    | Pasture                              | 1951-1986              | 800        | 26         | 774        | Xu (1992)                                |
| Molenbeek43                              | 45                      | Pasture                              | 1968-1987              | 731        | 277        | 454        | Ni-Lar-Win (1994)                        |
| Molenbeek44                              | 19                      | Pasture                              | 1967-1987              | 755        | 245        | 510        | Ni-Lar-Win (1994)                        |
| Mark                                     | 171                     | Pasture                              | 1976-1987              | 829        | 230        | 598        | Ni-Lar-Win (1994)                        |
| Ede                                      | 41                      | Pasture                              | 1969-1985              | 745        | 264        | 480        | Ni-Lar-Win (1994)                        |
| Gr. Molenbeek                            | 66                      | Pasture                              | 1975-1986              | 761        | 239        | 522        | Ni-Lar-Win (1994)                        |
| Grote Nete                               | 468                     | Pasture                              | 1976-1986              | 798        | 340        | 459        | Ni-Lar-Win (1994)                        |
| Demer                                    | 2163                    | Pasture                              | 1970-1986              | 758        | 213        | 545        | Ni-Lar-Win (1994)                        |
| Gete                                     | 810                     | Pasture                              | 1970-1986              | 747        | 176        | 572        | Ni-Lar-Win (1994)                        |
| Grote Gete                               | 208                     | Pasture                              | 1970-1987              | 797        | 180        | 617        | Ni-Lar-Win (1994)                        |
| Mandel                                   | 243                     | Pasture                              | 1968-1986              | 740        | 245        | 495        | Ni-Lar-Win (1994)                        |
| Brazil                                   |                         |                                      |                        |            |            |            |                                          |
| Agarape Acu                              | NA                      | Rainforest                           |                        | 1819       | æ          | 1363       | Holscher et al., (1997)                  |
| Manaus                                   | NA                      | Rainforests                          | 1983-1985              | 2648       | æ          | 1311       | Shuttleworth (1988)                      |
| Cameroon                                 |                         |                                      |                        |            |            |            |                                          |
| Kallaio                                  |                         |                                      | 1965-1970              | 812        | 148        | 664        | Morton (1983)                            |
| Sanguere                                 |                         | Forests                              | 1973-1976              | 1017       | 61         | 956        | Morton (1983)                            |
| Canada                                   |                         |                                      |                        |            |            |            |                                          |
| Castor                                   |                         | Pasture                              | 1967-1972              | 922        | 406        | 516        | Morton (1983)                            |
| Creighton                                |                         |                                      | 1971-1978              | 309        | 20         | 289        | Morton (1983)                            |
| Magnusson                                |                         | Pasture                              | 1972-1979              | 419        | 26         | 392        | Morton (1994)                            |
| Mimico                                   |                         |                                      | 1966-1071              | 828        | 296        | 532        | Morton (1983)                            |
| Perch                                    |                         |                                      | 1972-1978              | 844        | 336        | 508        | Morton (1983)                            |
| Ruscom                                   |                         | Mixed vegetation                     | 1972-1979              | 863        | 268        | 595        | Morton (1994)                            |
| Whitemud                                 |                         | Pasture                              | 1970-1974              | 515        | 78         | 437        | Morton (1994)                            |
|                                          |                         |                                      |                        |            |            |            |                                          |
| China                                    |                         |                                      |                        |            |            |            |                                          |
| <b>China</b><br>Hai River<br>Pearl River | 264600<br>452000        | Crops, pasture<br>Pasture, crops     | 1968-1984<br>1968-1984 | 550        | 85<br>1031 | 465        | Xu (1992)<br>Xu (1992)                   |

| Catchment                   | Area (km <sup>2</sup> ) | Vegetation cover                   | Years                  | P<br>(mm)    | Q<br>(mm)    | ET<br>(mm)   | References                                 |
|-----------------------------|-------------------------|------------------------------------|------------------------|--------------|--------------|--------------|--------------------------------------------|
| Wengjiang                   | 2000                    | Pasture, crops                     | 1968-1984              | 1867         | 1031         | 834          | Ni-Lar-Win (1994)                          |
| Andunshui                   | 385                     | Pasture, crops                     | 1970-1984              | 1848         | 1071         | 777          | Ni-Lar-Win (1994)                          |
| Shahe                       | 429                     | Pasture, crops                     | 1972-1986              | 691          | 114          | 577          | Ni-Lar-Win (1994)                          |
| Colombia                    |                         |                                    |                        |              |              |              |                                            |
| Sierra Nevada               | NA                      | Forest                             | Average                | 1983         | æ            | 1265         | Hermann (1970)                             |
| Guinea                      |                         |                                    |                        |              |              |              |                                            |
| Niger                       | 6280                    | Forest                             | 1981-1988              | 1469         | 265          | 1204         | Ni-Lar-Win (1994)                          |
| India                       |                         |                                    |                        |              |              |              |                                            |
| Betwa                       | 20600                   | Mixed vegetation                   | 1926-1975              | 1138         | 351          | 787          | Sutcliffe et al (1981)                     |
| Nilgiri                     | 0.32<br>0.32            | Mixed vegetation<br>Forested (59%) | 1982-1991<br>1982-1991 | 1309<br>1309 | 370<br>276   | 939<br>1033  | Sharda et al (1998)                        |
| Nilgiri                     | 0.32                    | Forested (59%)                     | 1982-1991              | 1309         | 270          | 1055         | Sharda et al (1998)                        |
| Indonesia                   | 0.22                    |                                    | 1000 1001              | 0051         |              | 1.401        |                                            |
| Janlappa                    | 0.32                    | Rain forest                        | 1990-1981              | 2851         | æ            | 1481         | Calder et al (1986)                        |
| Ivory Coast                 |                         | _                                  |                        |              |              |              |                                            |
| Baco I                      | 1.40                    | Forest                             | 3 years                | 1800         | æ            | 1145         | Huttel (1975)                              |
| Feredougouba<br>Boa         | 5020<br>5770            | Forest<br>Forest                   | 1981-1988<br>1981-1988 | 1494<br>1272 | 294<br>145   | 1200<br>1127 | Ni-Lar-Win (1994)<br>Ni-Lar-Win (1994)     |
| Bafing                      | 6230                    | Forest                             | 1981-1988              | 1272         | 252          | 1127         | Ni-Lar-Win (1994)                          |
| N'zo                        | 4300                    | Forest                             | 1981-1988              | 1602         | 307          | 1295         | Ni-Lar-Win (1994)                          |
| Taman                       |                         |                                    |                        |              |              |              |                                            |
| <b>Japan</b><br>Minanmitani | 0.23                    | Pinus densiflora                   | 1937-1943              | 1153         | 294          | 859          | Nakano (1967)                              |
| Kitatani                    | 0.23                    | Pinus densiflora                   | 1937-1943              | 1155         | 294<br>290   | 823          | Nakano (1967)                              |
| Vanua                       |                         |                                    |                        |              |              |              |                                            |
| Kenya<br>Awach Kabuon       |                         |                                    | 1969-1974              | 1462         | 308          | 1159         | Morton (1983)                              |
| Kimakia                     | 1.61                    | Bamboo forest                      | 1957-1960              | 2015         | 861          | 1154         | Pereira (1964)                             |
| Kimakia                     | 0.87                    | Maize                              | 1957-1960              | 2015         | 1135         | 880          | Pereira (1964)                             |
| Lagan                       | 5.44                    | Forests                            | 1957-1968              | 2049         | 721          | 1328         | Morton (1983)                              |
| Sambret                     | 7.02                    | Forests                            | 1957-1968              | 2080         | 789          | 1291         | Morton (1983)                              |
| Madagascar                  |                         |                                    |                        |              |              |              |                                            |
| D3 catchment                | 0.39                    | Forests                            | 1964-1972              | 2098         | 703          | 1394         | Bailly et al (1974)                        |
| D4 catchment                | 0.13                    | Eucalyptus robusta                 | 1964-1972              | 2081         | 786          | 1295         | Bailly et al (1974)                        |
| Malawi                      |                         |                                    |                        |              |              |              |                                            |
| Lilongwe                    | 730                     | Forest                             | 1953-1962              | 930          | 115          | 814          | Pike (1964)                                |
| Luweya                      | 900                     | Forest                             | 1953-1962              | 1554         | 447          | 1107         | Pike (1964)                                |
| Rivi Rivi                   | 305<br>542              | Forest                             | 1952-1957              | 909          | 102          | 807<br>804   | Pike (1964)                                |
| Luchila                     | 542                     | Mixed vegetation                   | 1951-1959              | 1092         | 288          | 804          | Pike (1964)                                |
| Mali                        |                         |                                    |                        |              |              |              |                                            |
| Faleme                      | 5720                    | Forest                             | 1981-1988              | 995          | 97           | 898          | Ni-Lar-Win (1994)                          |
| Myanmar (Burma)             |                         |                                    |                        |              |              |              |                                            |
| Yin<br>Yenwe                | 1100<br>790             | Pasture<br>Forest                  | 1982-1986<br>1981-1986 | 741<br>2978  | 100<br>1495  | 641<br>1483  | Ni-Lar-Win (1994)<br>Ni-Lar-Win (1994)     |
| Tenwe                       | 790                     | Forest                             | 1981-1980              | 2978         | 1495         | 1465         | NI-Lai- w III (1994)                       |
| New Zealand                 | 0.0414                  | Mired bassh                        | Long to                | 2600         | 1500         | 1100         | $\mathbf{P}_{0000000000$                   |
| Maimai (M7)<br>Maimai (M9)  | 0.0414<br>0.0826        | Mixed beech<br>Mixed beech         | Long term<br>average   | 2600<br>2600 | 1500<br>1500 | 1100<br>1100 | Pearce et al (1976)<br>Pearce et al (1976) |
| Waikato                     | 14000                   | Mixed vegetation                   | avelage                | 2600<br>1750 | 1500<br>975  | 775          | Morton (1983)                              |
| Panama                      |                         |                                    |                        |              |              |              |                                            |
| Agua Salud                  | 0.1                     | Mixed vegetation                   | 1981-1983              | 2744         | 1663         | 1081         | Lettau and Hopkins                         |
| (1991)                      | 0.1                     | mined vegetation                   | 1701 1705              | 2/77         | 1005         | 1001         | Lound and Hopkins                          |
| Barro Colorado              | 0.1                     | Forests                            | 1981-1984              | 2425         | æ            | 1440         | Bruijnzeel (1990)                          |
| Senegal                     |                         |                                    |                        |              |              |              |                                            |
| Faleme                      | 5720                    | Mixed vegetation                   | 1981-1988              | 1234         | 328          | 906          | Ni-Lar-Win (1994)                          |
|                             |                         |                                    |                        |              |              |              |                                            |

| Catchment                      | Area (km <sup>2</sup> ) | Vegetation cover      | Years     | P<br>(mm) | Q<br>(mm) | ET<br>(mm) | References                 |
|--------------------------------|-------------------------|-----------------------|-----------|-----------|-----------|------------|----------------------------|
| South Africa                   |                         |                       |           |           |           |            |                            |
| Biesievlei                     | 0.27                    | Fynbos                | Long term | 1400      | 660       | 800        | Bosch and Hewlett (1982)   |
| Bosboukloof                    | 2.1                     | Fynbos                | average   | 1390      | 590       | 800        | Bosch and Hewlett (1982)   |
| Cathedral                      | 1.90                    | Pasture               | -         | 1400      | 650       | 750        | Nänni (1970)               |
| Lambrechtsbos (A)              | 0.31                    | Fynbos                |           | 1393      | 556       | 837        | Bosch and Hewlett (1982)   |
| Lambrechtsbos (B)              | 0.65                    | Fynbos                |           | 1451      | 460       | 991        | Bosch and Hewlett (1982)   |
| Mokobulaan (A)                 | 0.26                    | Eucalypts             | 1973-1991 | 1193      | 24.5      | 1168       | Scott and Lesch (1997)     |
| Mokobulaan (B)                 | 0.35                    | Pines                 | 1973-1991 | 1207      | 85.0      | 1122       | Scott and Lesch (1997)     |
| Tierkloof                      | 1.57                    | Fynbos                | Long term | 1809      | 1100      | 709        | Bosch and Hewlett (1982)   |
| Westfalia                      | 0.40                    | Scrub forest          | average   | 1611      | 1063      | 548        | Dye (1996)                 |
| Spain                          |                         |                       |           |           |           |            |                            |
| L'Avic                         | 0.52                    | Forest                | 1981-1988 | 548       | 45        | 502        | Piñol et al. (1991)        |
| La Teula                       | 0.39                    | Forest                | 1986-1988 | 596       | 81        | 515        | Piñol et al. (1991)        |
| <b>Tanzania</b><br>Moro        |                         |                       | 1969-1974 | 1482      | 411       | 1071       | Morton (1983)              |
| U.K.                           |                         |                       |           |           |           |            |                            |
| Kingston Brook                 | 57                      | Pasture, crops        | 1969-1973 | 559       | 157       | 398        | McGowan et al (1980)       |
| U.S.A.                         | 0.01                    | D'                    |           | 1222      | 152       | 1100       |                            |
| Alum Creek (WS2)               | 0.01                    | Pine                  |           | 1333      | 153       | 1180       | Bosch and Hewlett (1982)   |
| Alum Creek (WS3)               | 0.01                    | Pine                  | 1060 1065 | 1230      | 256       | 975<br>569 | Bosch and Hewlett (1982)   |
| Ausable                        | 865                     | Pasture               | 1960-1965 | 801       | 233       | 568        | Morton (1971)              |
| Beaver Creek (1)<br>(1974)     | 1.24                    | Juniper-pinyon forest |           | 457       | 20        | 437        | Brown (1971), Clary et al  |
| Beaver Creek (3)<br>(1974)     | 1.46                    | Juniper-pinyon forest |           | 457       | 18        | 439        | Brown (1971), Clary et al  |
| Big Fossil                     |                         |                       | 1960-1965 | 858       | 100       | 758        | Morton (1983)              |
| Boyer                          |                         | Mixed vegetation      | 1960-1964 | 793       | 127       | 666        | Morton (1994)              |
| Placer county                  | 1.68                    | Oak woodland          | 1963-1966 | 635       | 145       | 490        | Lewis (1968)               |
| Burns                          | 5.63                    | Forest                |           | 597       | 155       | 442        | Helvey (1973, 1980)        |
| Castle Creek                   | 3.64                    | Conifer               |           | 639       | 71        | 568        | Rich (1968)                |
| Coshocton                      | 0.18                    | Mixed vegetation      |           | 970       | 300       | 670        | Harrold et al (1962)       |
| Coweeta (1)                    | 0.16                    | Mixed vegetation      |           | 1725      | 739       | 986        | Swank and Miner (1968)     |
| Coweeta (10)                   | 0.86                    | Mixed vegetation      |           | 1854      | 1072      | 782        | Swank and Miner (1968)     |
| Coweeta (13)                   | 0.16                    | Pasture               |           | 1900      | 889       | 1011       | Swift and Swank (1980)     |
| Coweeta (17)                   | 0.14                    | Mixed hardwoods       | 1936-1940 | 1768      | 709       | 1059       | Hoover (1944)              |
| Coweeta (17)                   | 0.14                    | Pasture               | 1940-1944 | 1953      | 1064      | 889        | Hoover (1944)              |
| Coweeta (18)                   | 0.31                    | Forests               | 1936-1940 | 1739      | 861       | 878        | Hoover (1944)              |
| Coweeta (19)                   | 0.28                    | Mixed hardwoods       | 20 years  | 2001      | 1222      | 779        | Johnson and Kovner (1956   |
| Coweeta (22)                   | 0.34                    | Mixed hardwoods       |           | 2068      | 1275      | 793        | Hewlett and Hibbert (1961) |
| Coweeta (3)                    | 0.09                    | Mixed hardwoods       |           | 1814      | 607       | 1207       | Johnson and Kovner (1956   |
| Cowetta (6)                    | 0.09                    | Mixed hardwoods       |           | 1854      | 838       | 1016       | Bosch and Hewlett (1982)   |
| Cowetta (2)                    | 0.12                    | Mixed hardwoods       |           | 1750      | 732       | 1019       | Hewlett and Hibbert (1961  |
| Etobicoke                      | 166                     |                       | 1960-1965 | 676       | 152       | 524        | Morton (1971)              |
| Fish                           | 150                     | Pasture               | 1960-1965 | 818       | 245       | 573        | Morton (1971)              |
| Fox Creek (FC1)                | .59                     | Mixed vegetation      | Long term | 2730      | 1750      | 980        | Harr (1976)                |
| Fox Creek (FC3)                | 0.71                    | Mixed vegetation      | average   | 2730      | 1750      | 980        | Harr (1976)                |
| H.J. Andrews (1)               | 0.96                    | Mixed vegetation      |           | 2388      | 1376      | 1012       | Rothacher (1970)           |
| H.J. Andrews (3)               | 1.01                    | Mixed vegetation      |           | 2388      | 1346      | 1042       | Rothacher (1970)           |
| H.J. Andrews (6)               | 0.13                    | Mixed vegetation      |           | 2150      | 1290      | 860        | Rothacher (1970)           |
| Hubbard Brook (WS2)            | 0.16                    | Mixed vegetation      |           | 1219      | 467       | 752        | Hornbeck et al (1970)      |
| James                          |                         |                       | 1960-1965 | 1025      | 237       | 788        | Morton (1983)              |
| Little Nemaha                  |                         | Mixed vegetation      | 1960-1964 | 764       | 101       | 663        | Morton (1994)              |
| Lynn                           | 142                     | Pasture               | 1960-1965 | 887       | 277       | 610        | Morton (1971)              |
| McCree                         | 5.14                    | Forest                |           | 579       | 112       | 467        | Helvey (1973, 1980)        |
| Monroe Canyon                  | 3.54                    | Chaparral             |           | 648       | 64        | 584        | Rowe (1963)                |
| Natural Drainage (A)           | 0.05                    | Chaparral             |           | 452       | 34        | 418        | Hibbert (1971)             |
| Natural Drainage (C)<br>(1979) | 0.05                    | Chaparral             |           | 452       | 43        | 409        | Hibbert (1971), Hibbert    |
| North                          |                         |                       | 1960-1965 | 841       | 188       | 653        | Morton (1983)              |
| North Fork, Workman            | 1.0                     | Conifer               |           | 813       | 86        | 727        | Rich et al (1961)          |
| Omaha                          |                         | Mixed vegetation      | 1960-1964 | 676       | 67        | 609        | Morton (1994)              |
| Pembina                        | 7430                    | Pasture               | 1960-1965 | 474       | 10        | 464        | Morton (1971)              |
| Placer county                  | 0.39                    | Chaparral             |           | 638       | 58        | 580        | Lewis (1968)               |
| Ribstone                       | 2560                    | Pasture               | 1960-1965 | 413       | 4         | 409        | Morton (1971)              |
| San Gabriel                    | 43.52                   | Mixed vegetation      | 1917-1924 | 782       | 185       | 597        | Hoyt and Troxell (1934)    |
|                                | 43.25                   | 0                     | -         | 655       | 178       | 477        | Hoyt and Troxell (1934)    |

#### COOPERATIVE RESEARCH CENTRE FOR **CATCHMENT HYDROLOGY**

| Catchment           | Area (km <sup>2</sup> ) | Vegetation cover | Years     | P<br>(mm) | Q<br>(mm) | ET<br>(mm) | References               |
|---------------------|-------------------------|------------------|-----------|-----------|-----------|------------|--------------------------|
| Soldier             |                         | Mixed vegetation | 1960-1964 | 774       | 129       | 645        | Morton (1994)            |
| South Fork, Workman | 1.29                    | Conifer          |           | 813       | 87        | 726        | Rich et al (1961)        |
| Swift Current       | 390                     | Pasture          | 1960-1965 | 342       | 9         | 333        | Morton (1971)            |
| Three Bar (B)       | 0.95                    | Pasture          | 1960-1969 | 542       | 32        | 510        | Hibbert (1971)           |
| Three Bar (C)       | 0.46                    | Pasture          | 1960-1969 | 627       | 170       | 456        | Hibbert (1971)           |
| Three Bar (D)       | 0.46                    | Forests          | 1960-1969 | 704       | 73        | 631        | Hibbert (1971)           |
| Three Bar (F)       | 0.28                    | Chaparral        | 1960-1969 | 681       | 36        | 645        | Hibbert 91971)           |
| Tucson              | NA                      | Desert           |           | 275       | æ         | 262        | Unland et al., (1996)    |
| Wascana             | 3780                    | Pasture          | 1960-1965 | 363       | 7         | 356        | Morton (1971)            |
| West Humber         | 205                     | Pasture          | 1960-1965 | 687       | 109       | 578        | Morton (1971)            |
| White Hollow        | 0.69                    | Douglas fir      | 1935-1949 | 1146      | 426       | 720        | T.V.A. (1961)            |
| White Spar          | 1.0                     | Chaparral        |           | 549       | 34        | 515        | Hibbert (1971)           |
| Yorkton             | 2460                    | Pasture          | 1960-1965 | 388       | 1         | 387        | Morton (1971)            |
| Uganda              |                         |                  |           |           |           |            |                          |
| Waki II             | 523                     |                  | 1969-1974 | 1360      | 166       | 1194       | Morton (1983)            |
| Yemen               |                         |                  |           |           |           |            |                          |
| Adhanah             | 12600                   | Crops            | 20 years  | 163       | 8         | 155        | Farquharson et al. (1996 |
| Ahwar               | 6410                    | Crops            |           | 210       | 13        | 197        | Farquharson et al. (1996 |
| Al Ain              | 1500                    | Crops            |           | 80        | 7         | 73         | Farquharson et al. (1996 |
| Amd/Duan            | 6553                    | Crops            |           | 100       | 3         | 97         | Farquharson et al. (1996 |
| Bana                | 7400                    | Crops            |           | 310       | 21        | 289        | Farquharson et al. (1996 |
| Bin Ali             | 743                     | Crops            |           | 65        | 6         | 59         | Farquharson et al. (1996 |
| Idim                | 5485                    | Crops            |           | 70        | 8         | 62         | Farquharson et al. (1996 |
| Jawf                | 14000                   | Crops            |           | 178       | 11        | 167        | Farquharson et al. (1996 |
| Juaymah             | 743                     | Crops            |           | 35        | 0         | 35         | Farquharson et al. (1996 |
| Mawar               | 7910                    | Crops            |           | 405       | 16        | 389        | Farquharson et al. (1996 |
| Mawza               | 1480                    | Crops            |           | 480       | 14        | 466        | Farquharson et al. (1996 |
| Najran              | 4400                    | Crops            |           | 151       | 16        | 135        | Farquharson et al. (1996 |
| Rabwa               | 455                     | Crops            | 20 years  | 320       | 7         | 313        | Farquharson et al. (1996 |
| Rasyan              | 1990                    | Crops            | ·         | 595       | 8         | 587        | Farquharson et al. (1996 |
| Rima                | 2250                    | Crops            |           | 465       | 22        | 443        | Farquharson et al. (1996 |
| Saar                | 2540                    | Crops            |           | 45        | 1         | 44         | Farquharson et al. (1996 |
| Siham               | 4900                    | Crops            |           | 410       | 15        | 395        | Farquharson et al. (1996 |
| Surdud              | 2300                    | Crops            |           | 495       | 36        | 459        | Farquharson et al. (1996 |
| Thibi               | 718                     | Crops            |           | 40        | 3         | 37         | Farquharson et al. (1996 |
| Tuban               | 5340                    | Crops            |           | 460       | 23        | 437        | Farquharson et al. (1996 |
| Zabid               | 4630                    | Crops            |           | 515       | 19        | 496        | Farquharson et al. (1996 |
| Zambia              |                         |                  |           |           |           |            | Farquharson et al. (1996 |
| Kafue               | 155000                  |                  | 1969-1974 | 1023      | 85        | 938        | Morton (1983)            |
| Zimbabwe            |                         |                  |           |           |           |            |                          |
| Mshagashi           | 514                     | Mixed vegetation | 1957-1965 | 661       | 64        | 597        | Lørup et al (1998)       |
| Ngei                | 1036                    | Mixed vegetation | 1957-1964 | 718       | 50        | 668        | Lørup et al (1998)       |
| Nyatsime            | 500                     | Mixed vegetation | 1957-1964 | 792       | 141       | 651        | Lørup et al (1998)       |
| Popotekwe           | 1010                    | Mixed vegetation | 1960-1968 | 649       | 69        | 580        | Lørup et al (1998)       |
| Roswa               | 197                     | Mixed vegetation | 1967-1975 | 713       | 119       | 594        | Lørup et al (1998)       |
| Turgwe              | 223                     | Mixed vegetation | 1967-1975 | 857       | 254       | 603        | Lørup et al (1998)       |

Note :

at Pinegrove station
 at Pallamallawa station
 at Manila Bridge
 at Keepit station
 at Breeza station
 at Breeza station
 at Caroona station
 at Gunnedah station
 at Boggabri station
 at Burndong station
 at Burndong station
 at Warren station
 at Medooran station
 at Medooran station
 at Covra station
 at Forbe station

16 at Condolin station
17 at Hillston Weir
18 at Billilingra station
19 at Angle Crossing
20 at Hall's Crossing
21 at Burrinjunck Dam
22 at Wagga wagga
23 at Narrandera
24 at Hay
25 at Blaranald station
26 at Walbundire station
27 at Darlot station
28 at Bourke station
29 at Wilcannica Main Channel
30 at Burtundy station

31 at Rochester station
32 at Redesdale station
33 at Strathfieldsaye station
34 at Kerang station
35 at Laanecoorie station
36 at Cairn Curran station
37 at Newstead station
38 at Serpentine Weir
39 at Lillicur station
40 at Wakool station
41 at Euston Weir
42 at Rufus Junction
43 at Massemen
44 at General Action