Watershed Modeling with the Spreadsheet Tool for Estimating Pollutant Load

Matt Schultz & Dave Menzie

New Mexico Environment Department Watershed Protection Section

Silver City Field Office

Download STEPL at:

http://it.tetratech-ffx.com/stepl

Why Estimate Pollutant Loads?

- Watershed planning (one of the 9 key elements)
- Target future management efforts
- BMP load reductions
- Required for 319 funded watershed planning and on-the ground implementation

Load Reduction Estimation

Load estimation techniques

Using models to estimate loads

Available models

Model selection

What Approach to Estimate Loads?

Depends on:

- water quality parameters
- time scale
- data needs
- user experience

"simplest approach that meets your needs"

BUT justify your choice

Spreadsheet Models

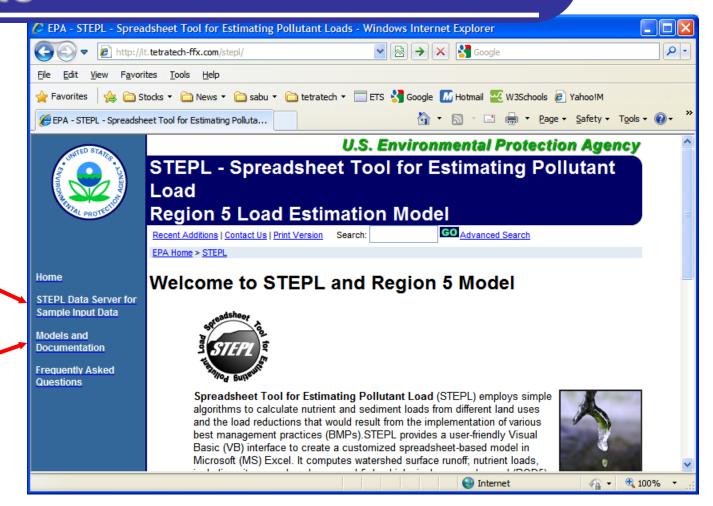
 Spreadsheet Tool for Estimating of Pollutant Load (STEPL) model

Region 5 model
 (a simple model not just for EPA Region 5)

Website

Link to on-line

Link to download


setup program to

install STEPL and

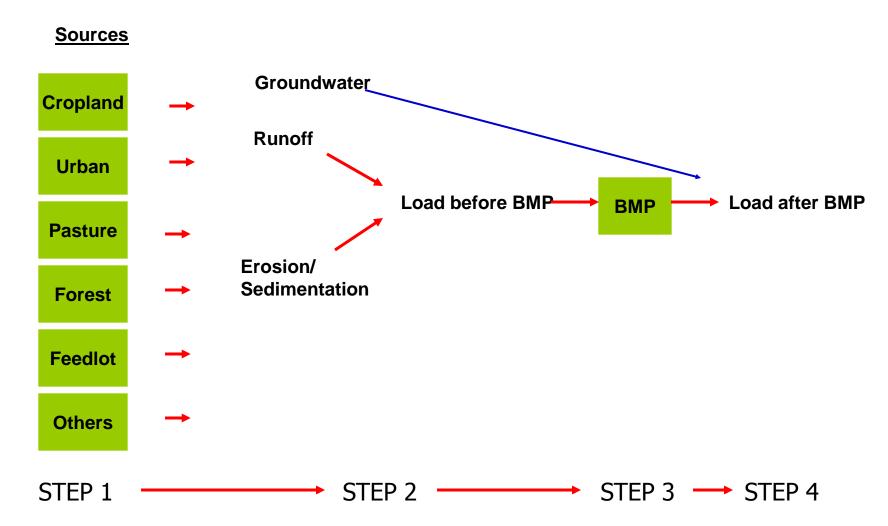
and documents

Region 5 programs

Data server

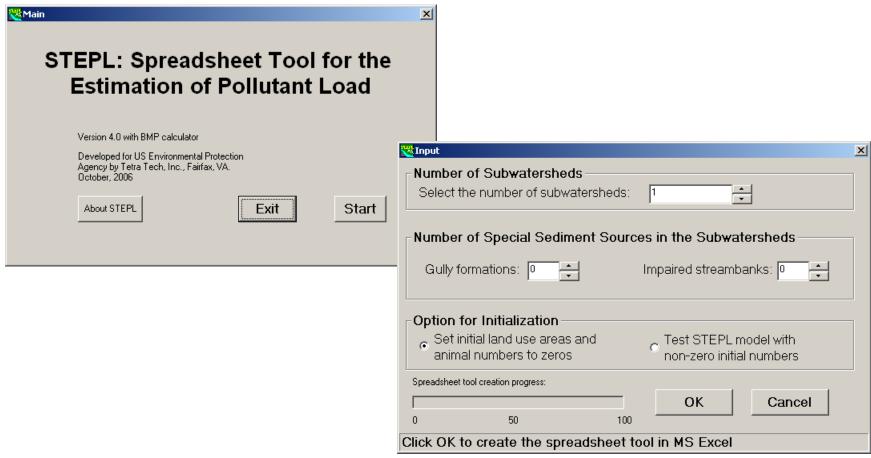
http://it.tetratech-ffx.com/stepl

What is STEPL?

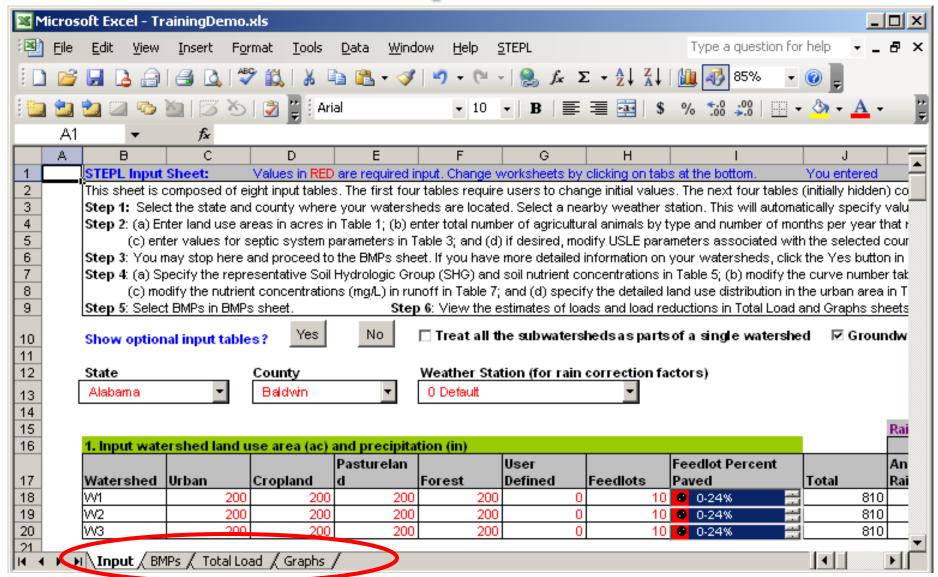

- Calculates nutrient and sediment loads by land use type
- Calculates load reductions from Best Management Practice (BMP) implementation
- A customized MS Excel spreadsheet model
 - Simple and easy to use
 - Data driven
 - Formulas and default parameter values can be modified by users with no programming required

Users

 Basic understanding of hydrology, erosion, and pollutant loading processes


- Environmental data (e.g., land use, agricultural statistics, and BMP efficiencies)
- Familiarity with MS Excel

Process



STEPL Main Program

 Run STEPL executable program to create and <u>customize</u> spreadsheet

STEPL Spreadsheet

BMPs Worksheet

Urban BMP Tool

Gully and Streambank Erosion

1. BMPs and efficiencies for different pollutants on CROPLAND, ND=No Data												
Watershed	tershed Cropland											
	N	Р	BOD	Sediment	BMPs	% Area BMP Applied						
W1	0.485	0.55	ND	0.405	O Contour Farming	100						
W2	0.1	0.3	ND	0.35	O Diversion	100						
W3	0	0	0	0	O No BMP	100						

Each land use type within each watershed can have a separate BMP or combinations of BMPs.

Can be partial application using the % Area BMP applied.

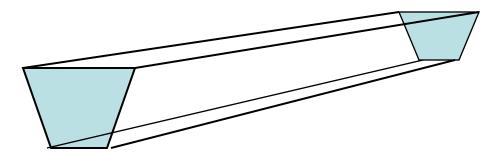
Can change the initial BMP efficiencies if local data are available.

Gully and Streambank Erosion Calculation Tool

1	. Gully dimensions	in the diff	ferent wa							
Watershed		Gully Top		Bottom Depth (ft)		Length	ngth Years BMP		Soil Textural Class	
			Width	Width		(ft)	to Form	Efficiency		
			(ft)	(ft)				(0-1)		
K	🔁 W1 📑	Gully1	5	5	5	5	1	0.95	🔼 Clay 📑	

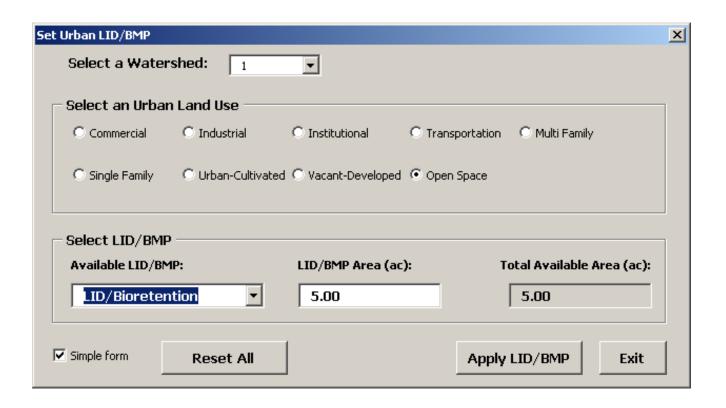
2	. Impaired streamb	ank dime	nsions in							
Watershed		Strm	Length	Height	Lateral Recession	Rate	Rate	BMP	Soil Textural Class	
		Bank	(ft)	(ft)		Range	(ft/yr)	Efficiency		
						(ft/yr)		(0-1)		
K	🕽 W1 🚆	Bank1	5	100	🔼 1. Slight 📑	0.01 - 0.05	0.03	0.95	O Clay	

Gully Stabilization Worksheet

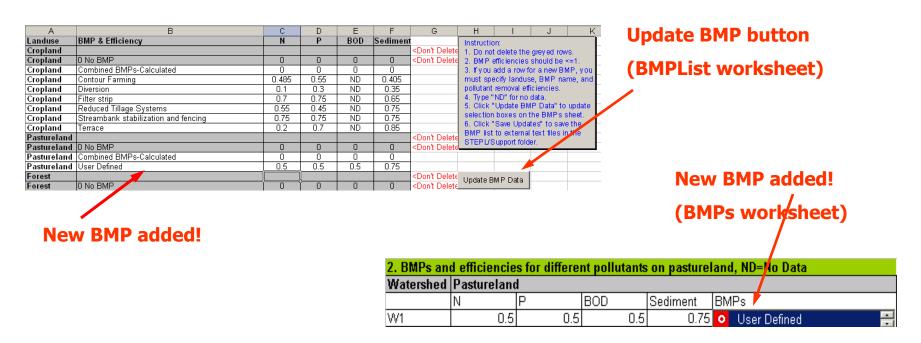

Load

Average annual erosion during the life of the gully (t/y)

= Volume x Soil Weight / Years


Nutrient load

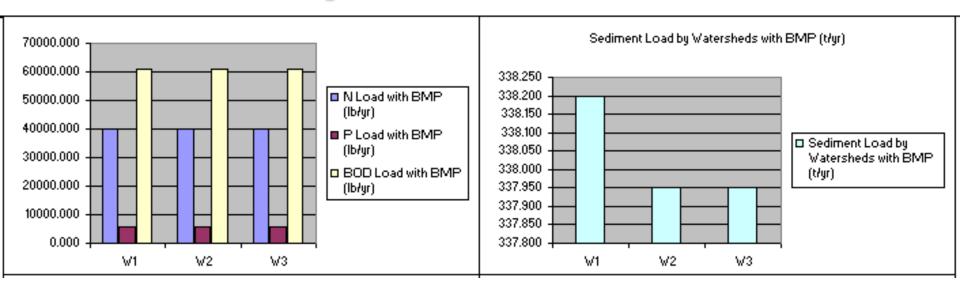
- = Annual Erosion x Soil Nutrient Conc. x Correction Factor
- Load Reduction after implementing gully stabilization
 - Specify reduction efficiency (100% efficiency by default)
 - Reduction is equal to annual erosion x user-specified efficiency

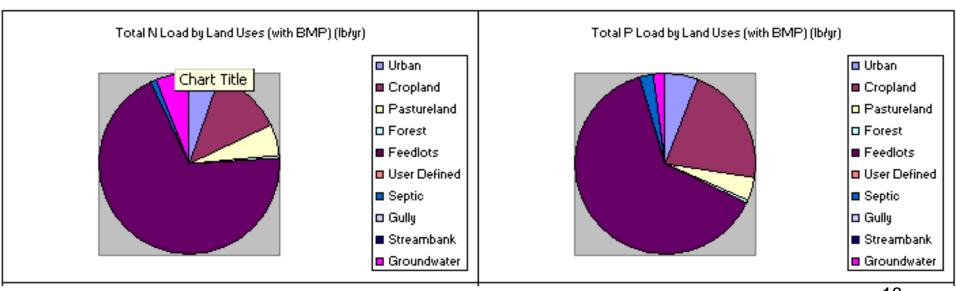

Volume = (Top Width +Bottom Width) x Depth x Length / 2

Urban BMP Tool

Add New Data to BMP List

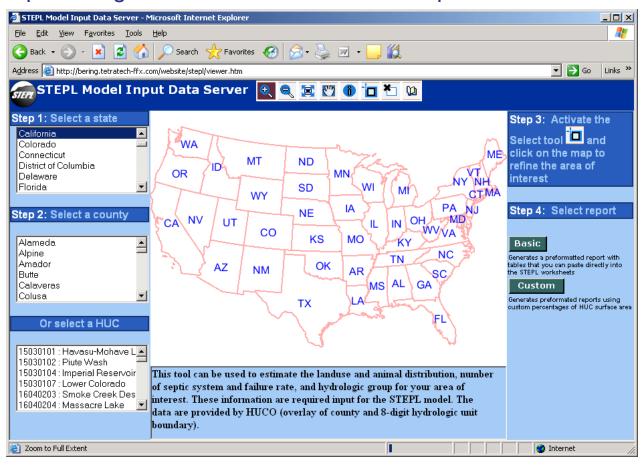
If a certain BMP is not in the selection list, can add your BMP to the database




Total Load Worksheet

1. Total load	by subwater	shed(s)						
Watershed	, , , , , , , , , , , , , , , , , , , ,		BOD Load		N Reduction	P Reduction		Sediment
	BMP)	BMP)	(no BMP)	Load (no BMP)			Reduction	Reduction
	lb/year	lb/year	lb/year	t/year	lb/year	lb/year	lb/year	t/year
- W1	39888.8	5615.6	60882.3	342.9	8.6	3.3	17.1	4.7
W2	39879.8	5612.2	60864.2	338.0	0.0	0.0	0.0	0.0
W3	39879.8	5612.2	60864.2	338.0	0.0	0.0	0.0	0.0
Total	119648.4	16839.9	182610.8	1018.8	8.6	3.3	17.1	4.7

Each row of results corresponds to a different watershed or project.


Graphs Worksheet

STEPL Online Input Data Server

http://bering.tetratech-ffx.com/website/stepl/viewer.htm

Or try

United States Department of Agriculture

National Agricultural Statistics Service

Questions?

www.nmenv.state.nm.us

